Cargando…
Reduced Gamma Oscillations in a Mouse Model of Intellectual Disability: A Role for Impaired Repetitive Neurotransmission?
Intellectual disability affects 2–3% of the population; mutations of the X-chromosome are a major cause of moderate to severe cases. The link between the molecular consequences of the mutation and impaired cognitive function remains unclear. Loss of function mutations of oligophrenin-1 (OPHN1) disru...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011727/ https://www.ncbi.nlm.nih.gov/pubmed/24800744 http://dx.doi.org/10.1371/journal.pone.0095871 |
Sumario: | Intellectual disability affects 2–3% of the population; mutations of the X-chromosome are a major cause of moderate to severe cases. The link between the molecular consequences of the mutation and impaired cognitive function remains unclear. Loss of function mutations of oligophrenin-1 (OPHN1) disrupt Rho-GTPase signalling. Here we demonstrate abnormal neurotransmission at CA3 synapses in hippocampal slices from Ophn1 (-/y) mice, resulting from a substantial decrease in the readily releasable pool of vesicles. As a result, synaptic transmission fails at high frequencies required for oscillations associated with cognitive functions. Both spontaneous and KA-induced gamma oscillations were reduced in Ophn1 (-/y) hippocampal slices. Spontaneous oscillations were rapidly rescued by inhibition of the downstream signalling pathway of oligophrenin-1. These findings suggest that the intellectual disability due to mutations of oligophrenin-1 results from a synaptopathy and consequent network malfunction, providing a plausible mechanism for the learning disabilities. Furthermore, they raise the prospect of drug treatments for affected individuals. |
---|