Cargando…

Epigenetic repression of phosphatidylethanolamine N-methyltransferase (PEMT) in BRCA1-mutated breast cancer

Phosphatidylethanolamine N-methyltransferase (PEMT) plays a critical role in breast cancer progression. However, the epigenetic mechanism regulating PEMT transcription remains largely unknown. Here, we show that the first promoter-specific transcript 1 is the major PEMT mRNA species, and methylation...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Da, Bi, Fang-Fang, Chen, Na-Na, Cao, Ji-Min, Sun, Wu-Ping, Zhou, Yi-Ming, Cao, Chen, Li, Chun-Yan, Yang, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012741/
https://www.ncbi.nlm.nih.gov/pubmed/24675476
Descripción
Sumario:Phosphatidylethanolamine N-methyltransferase (PEMT) plays a critical role in breast cancer progression. However, the epigenetic mechanism regulating PEMT transcription remains largely unknown. Here, we show that the first promoter-specific transcript 1 is the major PEMT mRNA species, and methylation of the -132 site is a key regulatory element for the PEMT gene in BRCA1-mutated breast cancer. Mechanistically, hypermethylated -132 site-mediated loss of active histone marks H3K9ac and increase of repressive histone marks H3K9me enrichment synergistically inhibited PEMT transcription. Clinicopathological data indicated that a hypermethylated -132 site was associated with histological grade (P = 0.031) and estrogen receptor status (P = 0.004); univariate survival and multivariate analyses demonstrated that lymph node metastasis was an independent and reliable prognostic factor for BRCA1-mutated breast cancer patients. Our findings imply that genetic (e.g., BRCA1 mutation) and epigenetic mechanisms (e.g., DNA methylation and histone modifications) are jointly involved in the malignant progression of PEMT-related breast cancer.