Cargando…
Topographic Factor Analysis: A Bayesian Model for Inferring Brain Networks from Neural Data
The neural patterns recorded during a neuroscientific experiment reflect complex interactions between many brain regions, each comprising millions of neurons. However, the measurements themselves are typically abstracted from that underlying structure. For example, functional magnetic resonance imag...
Autores principales: | Manning, Jeremy R., Ranganath, Rajesh, Norman, Kenneth A., Blei, David M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012983/ https://www.ncbi.nlm.nih.gov/pubmed/24804795 http://dx.doi.org/10.1371/journal.pone.0094914 |
Ejemplares similares
-
Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks
por: Kungl, Akos F., et al.
Publicado: (2019) -
Brain-Inspired Hardware Solutions for Inference in Bayesian Networks
por: Bagheriye, Leila, et al.
Publicado: (2021) -
A Bayesian generative neural network framework for epidemic inference problems
por: Biazzo, Indaco, et al.
Publicado: (2022) -
Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis
por: Perotte, Adler, et al.
Publicado: (2015) -
Network Plasticity as Bayesian Inference
por: Kappel, David, et al.
Publicado: (2015)