Cargando…
Multi-Modal Glioblastoma Segmentation: Man versus Machine
BACKGROUND AND PURPOSE: Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmen...
Autores principales: | Porz, Nicole, Bauer, Stefan, Pica, Alessia, Schucht, Philippe, Beck, Jürgen, Verma, Rajeev Kumar, Slotboom, Johannes, Reyes, Mauricio, Wiest, Roland |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013039/ https://www.ncbi.nlm.nih.gov/pubmed/24804720 http://dx.doi.org/10.1371/journal.pone.0096873 |
Ejemplares similares
-
Fully Automated Enhanced Tumor Compartmentalization: Man vs. Machine Reloaded
por: Porz, Nicole, et al.
Publicado: (2016) -
Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry
por: Meier, Raphael, et al.
Publicado: (2016) -
Radiomics for glioblastoma survival analysis in pre-operative MRI: exploring feature robustness, class boundaries, and machine learning techniques
por: Suter, Yannick, et al.
Publicado: (2020) -
The LUMIERE dataset: Longitudinal Glioblastoma MRI with expert RANO evaluation
por: Suter, Yannick, et al.
Publicado: (2022) -
Evaluating automated longitudinal tumor measurements for glioblastoma response assessment
por: Suter, Yannick, et al.
Publicado: (2023)