Cargando…
Whole Blood Gene Expression and Atrial Fibrillation: The Framingham Heart Study
BACKGROUND: Atrial fibrillation (AF) involves substantial electrophysiological, structural and contractile remodeling. We hypothesize that characterizing gene expression might uncover important pathways related to AF. METHODS AND RESULTS: We performed genome-wide whole blood transcriptomic profiling...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013062/ https://www.ncbi.nlm.nih.gov/pubmed/24805109 http://dx.doi.org/10.1371/journal.pone.0096794 |
Sumario: | BACKGROUND: Atrial fibrillation (AF) involves substantial electrophysiological, structural and contractile remodeling. We hypothesize that characterizing gene expression might uncover important pathways related to AF. METHODS AND RESULTS: We performed genome-wide whole blood transcriptomic profiling (Affymetrix Human Exon 1.0 ST Array) of 2446 participants (mean age 66±9 years, 55% women) from the Offspring cohort of Framingham Heart Study. The study included 177 participants with prevalent AF, 143 with incident AF during up to 7 years follow up, and 2126 participants with no AF. We identified seven genes statistically significantly up-regulated with prevalent AF. The most significant gene, PBX1 (P = 2.8×10(−7)), plays an important role in cardiovascular development. We integrated differential gene expression with gene-gene interaction information to identify several signaling pathways possibly involved in AF-related transcriptional regulation. We did not detect any statistically significant transcriptomic associations with incident AF. CONCLUSION: We examined associations of gene expression with AF in a large community-based cohort. Our study revealed several genes and signaling pathways that are potentially involved in AF-related transcriptional regulation. |
---|