Cargando…
The Repressive Effect of miR-148a on TGF beta-SMADs Signal Pathway Is Involved in the Glabridin-Induced Inhibition of the Cancer Stem Cells-Like Properties in Hepatocellular Carcinoma Cells
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Current standard practices for treatment of HCC are less than satisfactory because of cancer stem cells (CSCs)-mediated post-surgical recurrence. For this reason, targeting the CSCs or the cancer cells w...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013140/ https://www.ncbi.nlm.nih.gov/pubmed/24806207 http://dx.doi.org/10.1371/journal.pone.0096698 |
Sumario: | Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Current standard practices for treatment of HCC are less than satisfactory because of cancer stem cells (CSCs)-mediated post-surgical recurrence. For this reason, targeting the CSCs or the cancer cells with CSCs-like properties has become a new approach for the treatment of HCC. GLA exhibits anti-tumor effects in that it attenuates the proliferation, migration, invasion, and angiogenesis of human cancer cells. However, the functions of GLA in the regulation of CSCs-like properties in HCC cells, and the molecular mechanisms underlying in remain obscure. Here we found that GLA attenuated the CSCs-like properties by the microRNA-148a (miR-148a)-mediated inhibition of transforming growth factor beta (TGF-β)/SMAD2 signal pathway in HCC cell lines (HepG2, Huh-7, and MHCC97H). Indeed, GLA inhibited the activations/expressions of both TGFβ-induced and the endogenous SMAD2. Further, GLA improved the expression of miR-148a in a dose/time-dependent manner. MiR-148a, which targeted the SMAD2-3′UTR, decreased the expression and function of SMAD2. Knockdown of miR-148a abolished the GLA-induced inhibition of TGF-β/SMAD2 signal pathway and the CSCs-like properties in HCC cells. Our study found a novel mechanism that GLA inhibits the CSCs-like properties of HCC cells by miR-148a-mediated inhibition of TGF-β/SMAD2 signal pathway, which may help to identify potential targets for the therapies of HCC. |
---|