Cargando…

Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis

Friedreich’s ataxia (FRDA) is a hereditary neurodegenerative disease characterized by a reduced synthesis of the mitochondrial iron chaperon protein frataxin as a result of a large GAA triplet-repeat expansion within the first intron of the frataxin gene. Despite neurodegeneration being the prominen...

Descripción completa

Detalles Bibliográficos
Autores principales: Carletti, Barbara, Piermarini, Emanuela, Tozzi, Giulia, Travaglini, Lorena, Torraco, Alessandra, Pastore, Anna, Sparaco, Marco, Petrillo, Sara, Carrozzo, Rosalba, Bertini, Enrico, Piemonte, Fiorella
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013596/
https://www.ncbi.nlm.nih.gov/pubmed/24714088
http://dx.doi.org/10.3390/ijms15045789
_version_ 1782315080994521088
author Carletti, Barbara
Piermarini, Emanuela
Tozzi, Giulia
Travaglini, Lorena
Torraco, Alessandra
Pastore, Anna
Sparaco, Marco
Petrillo, Sara
Carrozzo, Rosalba
Bertini, Enrico
Piemonte, Fiorella
author_facet Carletti, Barbara
Piermarini, Emanuela
Tozzi, Giulia
Travaglini, Lorena
Torraco, Alessandra
Pastore, Anna
Sparaco, Marco
Petrillo, Sara
Carrozzo, Rosalba
Bertini, Enrico
Piemonte, Fiorella
author_sort Carletti, Barbara
collection PubMed
description Friedreich’s ataxia (FRDA) is a hereditary neurodegenerative disease characterized by a reduced synthesis of the mitochondrial iron chaperon protein frataxin as a result of a large GAA triplet-repeat expansion within the first intron of the frataxin gene. Despite neurodegeneration being the prominent feature of this pathology involving both the central and the peripheral nervous system, information on the impact of frataxin deficiency in neurons is scant. Here, we describe a neuronal model displaying some major biochemical and morphological features of FRDA. By silencing the mouse NSC34 motor neurons for the frataxin gene with shRNA lentiviral vectors, we generated two cell lines with 40% and 70% residual amounts of frataxin, respectively. Frataxin-deficient cells showed a specific inhibition of mitochondrial Complex I (CI) activity already at 70% residual frataxin levels, whereas the glutathione imbalance progressively increased after silencing. These biochemical defects were associated with the inhibition of cell proliferation and morphological changes at the axonal compartment, both depending on the frataxin amount. Interestingly, at 70% residual frataxin levels, the in vivo treatment with the reduced glutathione revealed a partial rescue of cell proliferation. Thus, NSC34 frataxin silenced cells could be a suitable model to study the effect of frataxin deficiency in neurons and highlight glutathione as a potential beneficial therapeutic target for FRDA.
format Online
Article
Text
id pubmed-4013596
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-40135962014-05-08 Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis Carletti, Barbara Piermarini, Emanuela Tozzi, Giulia Travaglini, Lorena Torraco, Alessandra Pastore, Anna Sparaco, Marco Petrillo, Sara Carrozzo, Rosalba Bertini, Enrico Piemonte, Fiorella Int J Mol Sci Article Friedreich’s ataxia (FRDA) is a hereditary neurodegenerative disease characterized by a reduced synthesis of the mitochondrial iron chaperon protein frataxin as a result of a large GAA triplet-repeat expansion within the first intron of the frataxin gene. Despite neurodegeneration being the prominent feature of this pathology involving both the central and the peripheral nervous system, information on the impact of frataxin deficiency in neurons is scant. Here, we describe a neuronal model displaying some major biochemical and morphological features of FRDA. By silencing the mouse NSC34 motor neurons for the frataxin gene with shRNA lentiviral vectors, we generated two cell lines with 40% and 70% residual amounts of frataxin, respectively. Frataxin-deficient cells showed a specific inhibition of mitochondrial Complex I (CI) activity already at 70% residual frataxin levels, whereas the glutathione imbalance progressively increased after silencing. These biochemical defects were associated with the inhibition of cell proliferation and morphological changes at the axonal compartment, both depending on the frataxin amount. Interestingly, at 70% residual frataxin levels, the in vivo treatment with the reduced glutathione revealed a partial rescue of cell proliferation. Thus, NSC34 frataxin silenced cells could be a suitable model to study the effect of frataxin deficiency in neurons and highlight glutathione as a potential beneficial therapeutic target for FRDA. Molecular Diversity Preservation International (MDPI) 2014-04-04 /pmc/articles/PMC4013596/ /pubmed/24714088 http://dx.doi.org/10.3390/ijms15045789 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Carletti, Barbara
Piermarini, Emanuela
Tozzi, Giulia
Travaglini, Lorena
Torraco, Alessandra
Pastore, Anna
Sparaco, Marco
Petrillo, Sara
Carrozzo, Rosalba
Bertini, Enrico
Piemonte, Fiorella
Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis
title Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis
title_full Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis
title_fullStr Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis
title_full_unstemmed Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis
title_short Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis
title_sort frataxin silencing inactivates mitochondrial complex i in nsc34 motoneuronal cells and alters glutathione homeostasis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013596/
https://www.ncbi.nlm.nih.gov/pubmed/24714088
http://dx.doi.org/10.3390/ijms15045789
work_keys_str_mv AT carlettibarbara frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT piermariniemanuela frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT tozzigiulia frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT travaglinilorena frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT torracoalessandra frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT pastoreanna frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT sparacomarco frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT petrillosara frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT carrozzorosalba frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT bertinienrico frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis
AT piemontefiorella frataxinsilencinginactivatesmitochondrialcomplexiinnsc34motoneuronalcellsandaltersglutathionehomeostasis