Cargando…

Functional Analysis of the Dioxin Response Elements (DREs) of the Murine CYP1A1 Gene Promoter: Beyond the Core DRE Sequence

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the biological and toxicological effects of halogenated aromatic hydrocarbons, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). When activated by dioxin, the cytosolic AhR protein complex translocates int...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shuaizhang, Pei, Xinhui, Zhang, Wen, Xie, Heidi Qunhui, Zhao, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013641/
https://www.ncbi.nlm.nih.gov/pubmed/24743890
http://dx.doi.org/10.3390/ijms15046475
_version_ 1782315091414220800
author Li, Shuaizhang
Pei, Xinhui
Zhang, Wen
Xie, Heidi Qunhui
Zhao, Bin
author_facet Li, Shuaizhang
Pei, Xinhui
Zhang, Wen
Xie, Heidi Qunhui
Zhao, Bin
author_sort Li, Shuaizhang
collection PubMed
description The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the biological and toxicological effects of halogenated aromatic hydrocarbons, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). When activated by dioxin, the cytosolic AhR protein complex translocates into the nucleus and dimerizes with the ARNT (Ah receptor nuclear translocator) protein. The heteromeric ligand:AhR/Arnt complex then recognizes and binds to its specific DNA recognition site, the dioxin response element (DRE). DREs are located upstream of cytochrome P4501A1 (CYP1A1) and other AhR-responsive genes, and binding of the AhR complex stimulates their transcription. Although CYP1A1 expression has been used as the model system to define the biochemical and molecular mechanism of AhR action, there is still limited knowledge about the roles of each of the seven DREs located in the CYP1A1 promoter. These seven DREs are conserved in mouse, human and rat. Deletion analysis showed that a single DRE at −488 was enough to activate the transcription. Truncation analysis demonstrated that the DRE at site −981 has the highest transcriptional efficiency in response to TCDD. This result was verified by mutation analysis, suggesting that the conserved DRE at site −981 could represent a significant and universal AhR regulatory element for CYP1A1. The reversed substituted intolerant core sequence (5′-GCGTG-3′ or 5′-CACGC-3′) of seven DREs reduced the transcriptional efficiency, which illustrated that the adjacent sequences of DRE played a vital role in activating transcription. The core DRE sequence (5′-TNGCGTG-3′) tends to show a higher transcriptional level than that of the core DRE sequence (5′-CACGCNA-3′) triggered by TCDD. Furthermore, in the core DRE (5′-TNGCGTG-3′) sequence, when “N” is thymine or cytosine (T or C), the transcription efficiency was stronger compared with that of the other nucleotides. The effects of DRE orientation, DRE adjacent sequences and the nucleotide “N” in the core DRE (5′-TNGCGTG-3′) sequence on the AhR-regulated CYP1A1 transcription in response to TCDD were studied systematically, and our study laid a good foundation for further investigation into the AhR-dependent transcriptional regulation triggered by dioxin and dioxin-like compounds.
format Online
Article
Text
id pubmed-4013641
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-40136412014-05-08 Functional Analysis of the Dioxin Response Elements (DREs) of the Murine CYP1A1 Gene Promoter: Beyond the Core DRE Sequence Li, Shuaizhang Pei, Xinhui Zhang, Wen Xie, Heidi Qunhui Zhao, Bin Int J Mol Sci Article The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the biological and toxicological effects of halogenated aromatic hydrocarbons, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). When activated by dioxin, the cytosolic AhR protein complex translocates into the nucleus and dimerizes with the ARNT (Ah receptor nuclear translocator) protein. The heteromeric ligand:AhR/Arnt complex then recognizes and binds to its specific DNA recognition site, the dioxin response element (DRE). DREs are located upstream of cytochrome P4501A1 (CYP1A1) and other AhR-responsive genes, and binding of the AhR complex stimulates their transcription. Although CYP1A1 expression has been used as the model system to define the biochemical and molecular mechanism of AhR action, there is still limited knowledge about the roles of each of the seven DREs located in the CYP1A1 promoter. These seven DREs are conserved in mouse, human and rat. Deletion analysis showed that a single DRE at −488 was enough to activate the transcription. Truncation analysis demonstrated that the DRE at site −981 has the highest transcriptional efficiency in response to TCDD. This result was verified by mutation analysis, suggesting that the conserved DRE at site −981 could represent a significant and universal AhR regulatory element for CYP1A1. The reversed substituted intolerant core sequence (5′-GCGTG-3′ or 5′-CACGC-3′) of seven DREs reduced the transcriptional efficiency, which illustrated that the adjacent sequences of DRE played a vital role in activating transcription. The core DRE sequence (5′-TNGCGTG-3′) tends to show a higher transcriptional level than that of the core DRE sequence (5′-CACGCNA-3′) triggered by TCDD. Furthermore, in the core DRE (5′-TNGCGTG-3′) sequence, when “N” is thymine or cytosine (T or C), the transcription efficiency was stronger compared with that of the other nucleotides. The effects of DRE orientation, DRE adjacent sequences and the nucleotide “N” in the core DRE (5′-TNGCGTG-3′) sequence on the AhR-regulated CYP1A1 transcription in response to TCDD were studied systematically, and our study laid a good foundation for further investigation into the AhR-dependent transcriptional regulation triggered by dioxin and dioxin-like compounds. Molecular Diversity Preservation International (MDPI) 2014-04-16 /pmc/articles/PMC4013641/ /pubmed/24743890 http://dx.doi.org/10.3390/ijms15046475 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Li, Shuaizhang
Pei, Xinhui
Zhang, Wen
Xie, Heidi Qunhui
Zhao, Bin
Functional Analysis of the Dioxin Response Elements (DREs) of the Murine CYP1A1 Gene Promoter: Beyond the Core DRE Sequence
title Functional Analysis of the Dioxin Response Elements (DREs) of the Murine CYP1A1 Gene Promoter: Beyond the Core DRE Sequence
title_full Functional Analysis of the Dioxin Response Elements (DREs) of the Murine CYP1A1 Gene Promoter: Beyond the Core DRE Sequence
title_fullStr Functional Analysis of the Dioxin Response Elements (DREs) of the Murine CYP1A1 Gene Promoter: Beyond the Core DRE Sequence
title_full_unstemmed Functional Analysis of the Dioxin Response Elements (DREs) of the Murine CYP1A1 Gene Promoter: Beyond the Core DRE Sequence
title_short Functional Analysis of the Dioxin Response Elements (DREs) of the Murine CYP1A1 Gene Promoter: Beyond the Core DRE Sequence
title_sort functional analysis of the dioxin response elements (dres) of the murine cyp1a1 gene promoter: beyond the core dre sequence
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013641/
https://www.ncbi.nlm.nih.gov/pubmed/24743890
http://dx.doi.org/10.3390/ijms15046475
work_keys_str_mv AT lishuaizhang functionalanalysisofthedioxinresponseelementsdresofthemurinecyp1a1genepromoterbeyondthecoredresequence
AT peixinhui functionalanalysisofthedioxinresponseelementsdresofthemurinecyp1a1genepromoterbeyondthecoredresequence
AT zhangwen functionalanalysisofthedioxinresponseelementsdresofthemurinecyp1a1genepromoterbeyondthecoredresequence
AT xieheidiqunhui functionalanalysisofthedioxinresponseelementsdresofthemurinecyp1a1genepromoterbeyondthecoredresequence
AT zhaobin functionalanalysisofthedioxinresponseelementsdresofthemurinecyp1a1genepromoterbeyondthecoredresequence