Cargando…
MALDI Q-TOF CID MS for Diagnostic Ion Screening of Human Milk Oligosaccharide Samples
Human milk oligosaccharides (HMO) represent the bioactive components of human milk, influencing the infant’s gastrointestinal microflora and immune system. Structurally, they represent a highly complex class of analyte, where the main core oligosaccharide structures are built from galactose and N-ac...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013645/ https://www.ncbi.nlm.nih.gov/pubmed/24743894 http://dx.doi.org/10.3390/ijms15046527 |
_version_ | 1782315092322287616 |
---|---|
author | Jovanović, Marko Tyldesley-Worster, Richard Pohlentz, Gottfried Peter-Katalinić, Jasna |
author_facet | Jovanović, Marko Tyldesley-Worster, Richard Pohlentz, Gottfried Peter-Katalinić, Jasna |
author_sort | Jovanović, Marko |
collection | PubMed |
description | Human milk oligosaccharides (HMO) represent the bioactive components of human milk, influencing the infant’s gastrointestinal microflora and immune system. Structurally, they represent a highly complex class of analyte, where the main core oligosaccharide structures are built from galactose and N-acetylglucosamine, linked by 1–3 or 1–4 glycosidic linkages and potentially modified with fucose and sialic acid residues. The core structures can be linear or branched. Additional structural complexity in samples can be induced by endogenous exoglycosidase activity or chemical procedures during the sample preparation. Here, we show that using matrix-assisted laser desorption/ionization (MALDI) quadrupole-time-of-flight (Q-TOF) collision-induced dissociation (CID) as a fast screening method, diagnostic structural information about single oligosaccharide components present in a complex mixture can be obtained. According to sequencing data on 14 out of 22 parent ions detected in a single high molecular weight oligosaccharide chromatographic fraction, 20 different oligosaccharide structure types, corresponding to over 30 isomeric oligosaccharide structures and over 100 possible HMO isomers when biosynthetic linkage variations were taken into account, were postulated. For MS/MS data analysis, we used the de novo sequencing approach using diagnostic ion analysis on reduced oligosaccharides by following known biosynthetic rules. Using this approach, de novo characterization has been achieved also for the structures, which could not have been predicted. |
format | Online Article Text |
id | pubmed-4013645 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-40136452014-05-08 MALDI Q-TOF CID MS for Diagnostic Ion Screening of Human Milk Oligosaccharide Samples Jovanović, Marko Tyldesley-Worster, Richard Pohlentz, Gottfried Peter-Katalinić, Jasna Int J Mol Sci Article Human milk oligosaccharides (HMO) represent the bioactive components of human milk, influencing the infant’s gastrointestinal microflora and immune system. Structurally, they represent a highly complex class of analyte, where the main core oligosaccharide structures are built from galactose and N-acetylglucosamine, linked by 1–3 or 1–4 glycosidic linkages and potentially modified with fucose and sialic acid residues. The core structures can be linear or branched. Additional structural complexity in samples can be induced by endogenous exoglycosidase activity or chemical procedures during the sample preparation. Here, we show that using matrix-assisted laser desorption/ionization (MALDI) quadrupole-time-of-flight (Q-TOF) collision-induced dissociation (CID) as a fast screening method, diagnostic structural information about single oligosaccharide components present in a complex mixture can be obtained. According to sequencing data on 14 out of 22 parent ions detected in a single high molecular weight oligosaccharide chromatographic fraction, 20 different oligosaccharide structure types, corresponding to over 30 isomeric oligosaccharide structures and over 100 possible HMO isomers when biosynthetic linkage variations were taken into account, were postulated. For MS/MS data analysis, we used the de novo sequencing approach using diagnostic ion analysis on reduced oligosaccharides by following known biosynthetic rules. Using this approach, de novo characterization has been achieved also for the structures, which could not have been predicted. Molecular Diversity Preservation International (MDPI) 2014-04-16 /pmc/articles/PMC4013645/ /pubmed/24743894 http://dx.doi.org/10.3390/ijms15046527 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Jovanović, Marko Tyldesley-Worster, Richard Pohlentz, Gottfried Peter-Katalinić, Jasna MALDI Q-TOF CID MS for Diagnostic Ion Screening of Human Milk Oligosaccharide Samples |
title | MALDI Q-TOF CID MS for Diagnostic Ion Screening of Human Milk Oligosaccharide Samples |
title_full | MALDI Q-TOF CID MS for Diagnostic Ion Screening of Human Milk Oligosaccharide Samples |
title_fullStr | MALDI Q-TOF CID MS for Diagnostic Ion Screening of Human Milk Oligosaccharide Samples |
title_full_unstemmed | MALDI Q-TOF CID MS for Diagnostic Ion Screening of Human Milk Oligosaccharide Samples |
title_short | MALDI Q-TOF CID MS for Diagnostic Ion Screening of Human Milk Oligosaccharide Samples |
title_sort | maldi q-tof cid ms for diagnostic ion screening of human milk oligosaccharide samples |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013645/ https://www.ncbi.nlm.nih.gov/pubmed/24743894 http://dx.doi.org/10.3390/ijms15046527 |
work_keys_str_mv | AT jovanovicmarko maldiqtofcidmsfordiagnosticionscreeningofhumanmilkoligosaccharidesamples AT tyldesleyworsterrichard maldiqtofcidmsfordiagnosticionscreeningofhumanmilkoligosaccharidesamples AT pohlentzgottfried maldiqtofcidmsfordiagnosticionscreeningofhumanmilkoligosaccharidesamples AT peterkatalinicjasna maldiqtofcidmsfordiagnosticionscreeningofhumanmilkoligosaccharidesamples |