Cargando…
Direct writing of graphene patterns on insulating substrates under ambient conditions
To unleash the full potential of graphene in electronics and optoelectronics, high-quality graphene patterns on insulating substrates are required. However, existing methods generally follow a “synthesis + patterning” strategy, which are time consuming and costly for fabricating high-quality graphen...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013930/ https://www.ncbi.nlm.nih.gov/pubmed/24809639 http://dx.doi.org/10.1038/srep04892 |
Sumario: | To unleash the full potential of graphene in electronics and optoelectronics, high-quality graphene patterns on insulating substrates are required. However, existing methods generally follow a “synthesis + patterning” strategy, which are time consuming and costly for fabricating high-quality graphene patterns on desired substrates. We developed a nanofabrication process to deposit high-quality graphene patterns directly on insulating substrates via a solid-phase laser direct writing (LDW) process. Open-air and room-temperature fabrication of graphene patterns on insulating substrates has been achieved via a femtosecond LDW process without graphene transfer and patterning. Various graphene patterns, including texts, spirals, line arrays, and integrated circuit patterns, with a feature line width of 800 nm and a low sheet resistance of 205 ohm/sq, were fabricated. The LDW method provides a facile and cost-effective way to fabricate complex and high-quality graphene patterns directly on target substrates, which opens a door for fabricating various advanced functional devices. |
---|