Cargando…

Retinoid-X-Receptors (α/β) in Melanocytes Modulate Innate Immune Responses and Differentially Regulate Cell Survival following UV Irradiation

Understanding the molecular mechanisms of ultraviolet (UV) induced melanoma formation is becoming crucial with more reported cases each year. Expression of type II nuclear receptor Retinoid-X-Receptor α (RXRα) is lost during melanoma progression in humans. Here, we observed that in mice with melanoc...

Descripción completa

Detalles Bibliográficos
Autores principales: Coleman, Daniel J., Garcia, Gloria, Hyter, Stephen, Jang, Hyo Sang, Chagani, Sharmeen, Liang, Xiaobo, Larue, Lionel, Ganguli-Indra, Gitali, Indra, Arup K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4014444/
https://www.ncbi.nlm.nih.gov/pubmed/24810760
http://dx.doi.org/10.1371/journal.pgen.1004321
Descripción
Sumario:Understanding the molecular mechanisms of ultraviolet (UV) induced melanoma formation is becoming crucial with more reported cases each year. Expression of type II nuclear receptor Retinoid-X-Receptor α (RXRα) is lost during melanoma progression in humans. Here, we observed that in mice with melanocyte-specific ablation of RXRα and RXRβ, melanocytes attract fewer IFN-γ secreting immune cells than in wild-type mice following acute UVR exposure, via altered expression of several chemoattractive and chemorepulsive chemokines/cytokines. Reduced IFN-γ in the microenvironment alters UVR-induced apoptosis, and due to this, the survival of surrounding dermal fibroblasts is significantly decreased in mice lacking RXRα/β. Interestingly, post-UVR survival of the melanocytes themselves is enhanced in the absence of RXRα/β. Loss of RXRs α/β specifically in the melanocytes results in an endogenous shift in homeostasis of pro- and anti-apoptotic genes in these cells and enhances their survival compared to the wild type melanocytes. Therefore, RXRs modulate post-UVR survival of dermal fibroblasts in a “non-cell autonomous” manner, underscoring their role in immune surveillance, while independently mediating post-UVR melanocyte survival in a “cell autonomous” manner. Our results emphasize a novel immunomodulatory role of melanocytes in controlling survival of neighboring cell types besides controlling their own, and identifies RXRs as potential targets for therapy against UV induced melanoma.