Cargando…
The Use of Recently Developed Histochemical Markers for Localizing Neurotoxicant Induced Regional Brain Pathologies
Neuronal and vascular brain components are interrelated morphologically, physiologically and developmentally. Due to this close interrelationship, it is often difficult to understand the cause and effect relationship between neuronal vs. vascular dysfunction and pathology. This review will discuss f...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4014745/ https://www.ncbi.nlm.nih.gov/pubmed/24763333 http://dx.doi.org/10.3390/toxins6041453 |
Sumario: | Neuronal and vascular brain components are interrelated morphologically, physiologically and developmentally. Due to this close interrelationship, it is often difficult to understand the cause and effect relationship between neuronal vs. vascular dysfunction and pathology. This review will discuss four of the more promising recent developments for detecting vascular pathology, and will compare them with the labeling pattern seen with markers of glial and neuronal pathology; following exposure to well characterized neurotoxicants. To detect the vascular dysfunction in the brain, we recently developed a Fluoro-Turquoise gelatin conjugate (FT-gel), a fluorescent probe that helps to delineate between healthy vs. sclerotic vessels. Similarly, we have investigated the potential for Fluoro-Gold to label in vivo all the endothelial cells in the brain as they co-localize with RECA, an endothelial cell marker. We have also developed Amylo-Glo, a fluorescent tracer that can detect neurotoxic A-beta aggregates in the brain. In this article, we will discuss the potential use of these novel histochemical markers to study the neurotoxicant induced brain. We will also discuss neurovascular strategies that may offer novel therapeutic opportunities for neurodegenerative disorders. |
---|