Cargando…

Associations between Traffic Noise, Particulate Air Pollution, Hypertension, and Isolated Systolic Hypertension in Adults: The KORA Study

Background: Studies on the association between traffic noise and cardiovascular diseases have rarely considered air pollution as a covariate in the analyses. Isolated systolic hypertension has not yet been in the focus of epidemiological noise research. Methods: The association between traffic noise...

Descripción completa

Detalles Bibliográficos
Autores principales: Babisch, Wolfgang, Wolf, Kathrin, Petz, Markus, Heinrich, Joachim, Cyrys, Josef, Peters, Annette
Formato: Online Artículo Texto
Lenguaje:English
Publicado: NLM-Export 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4014763/
https://www.ncbi.nlm.nih.gov/pubmed/24602804
http://dx.doi.org/10.1289/ehp.1306981
Descripción
Sumario:Background: Studies on the association between traffic noise and cardiovascular diseases have rarely considered air pollution as a covariate in the analyses. Isolated systolic hypertension has not yet been in the focus of epidemiological noise research. Methods: The association between traffic noise (road and rail) and the prevalence of hypertension was assessed in two study populations with a total of 4,166 participants 25–74 years of age. Traffic noise (weighted day–night average noise level; L(DN)) at the facade of the dwellings was derived from noise maps. Annual average PM(2.5) mass concentrations at residential addresses were estimated by land-use regression. Hypertension was assessed by blood pressure readings, self-reported doctor-diagnosed hypertension, and antihypertensive drug intake. Results: In the Greater Augsburg, Germany, study population, traffic noise and air pollution were not associated with hypertension. In the City of Augsburg population (n = 1,893), where the exposure assessment was more detailed, the adjusted odds ratio (OR) for a 10-dB(A) increase in noise was 1.16 (95% CI: 1.00, 1.35), and 1.11 (95% CI: 0.94, 1.30) after additional adjustment for PM(2.5). The adjusted OR for a 1-μg/m(3) increase in PM(2.5) was 1.15 (95% CI: 1.02, 1.30), and 1.11 (95% CI: 0.98, 1.27) after additional adjustment for noise. For isolated systolic hypertension, the fully adjusted OR for noise was 1.43 (95% CI: 1.10, 1.86) and for PM(2.5) was 1.08 (95% CI: 0.87, 1.34). Conclusions: Traffic noise and PM(2.5) were both associated with a higher prevalence of hypertension. Mutually adjusted associations with hypertension were positive but no longer statistically significant. Citation: Babisch W, Wolf K, Petz M, Heinrich J, Cyrys J, Peters A. 2014. Associations between traffic noise, particulate air pollution, hypertension, and isolated systolic hypertension in adults: the KORA Study. Environ Health Perspect 122:492–498; http://dx.doi.org/10.1289/ehp.1306981