Cargando…

Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles

Spatial order or periodicity is usually required and constructed with tens of nanometers in the feature size, which makes it difficult to process the near-perfect metamaterial absorbers (PMAs) working in the visible range in large-area and mass-production scale. Although many established technologie...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yun, Wei, Tiaoxing, Dong, Wenjing, Zhang, Kenan, Sun, Yan, Chen, Xin, Dai, Ning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4014980/
https://www.ncbi.nlm.nih.gov/pubmed/24810434
http://dx.doi.org/10.1038/srep04850
Descripción
Sumario:Spatial order or periodicity is usually required and constructed with tens of nanometers in the feature size, which makes it difficult to process the near-perfect metamaterial absorbers (PMAs) working in the visible range in large-area and mass-production scale. Although many established technologies and theoretical modeling methods used for order-based metamaterials, aperiodic or disordered structures have been gradually recognized to achieve similar functionalities for which the ordered structures are overwhelmingly used. Here, we demonstrated the vapor-deposited ‘amorphous’ metamaterials as controlled-reflectance surfaces and tunable PMAs without the use of the lithographically ordered arrays, the prefabricated colloidal metal nanoparticles (MNPs) or the multilayer of nanoparticles. The flexible construction, the control of the monolayer of MNPs and the atomic-layer-deposited (ALD) dielectric spacer layer provide more insight for understanding the controlled-reflectance surfaces. Such processes have a few key advantages of CMOS-compatible simple processing, low cost and large-area plating, allowing the PMAs to be flexibly constructed in mass-production scale.