Cargando…
DNA methylation age of human tissues and cell types
BACKGROUND: It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. RESULTS: I developed a multi-tissue predictor of age that allow...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015143/ https://www.ncbi.nlm.nih.gov/pubmed/24138928 http://dx.doi.org/10.1186/gb-2013-14-10-r115 |
_version_ | 1782315286954770432 |
---|---|
author | Horvath, Steve |
author_facet | Horvath, Steve |
author_sort | Horvath, Steve |
collection | PubMed |
description | BACKGROUND: It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. RESULTS: I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. CONCLUSIONS: I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research. |
format | Online Article Text |
id | pubmed-4015143 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40151432014-05-10 DNA methylation age of human tissues and cell types Horvath, Steve Genome Biol Research BACKGROUND: It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. RESULTS: I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. CONCLUSIONS: I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research. BioMed Central 2013 2013-10-21 /pmc/articles/PMC4015143/ /pubmed/24138928 http://dx.doi.org/10.1186/gb-2013-14-10-r115 Text en Copyright © 2013 Horvath; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Horvath, Steve DNA methylation age of human tissues and cell types |
title | DNA methylation age of human tissues and cell types |
title_full | DNA methylation age of human tissues and cell types |
title_fullStr | DNA methylation age of human tissues and cell types |
title_full_unstemmed | DNA methylation age of human tissues and cell types |
title_short | DNA methylation age of human tissues and cell types |
title_sort | dna methylation age of human tissues and cell types |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015143/ https://www.ncbi.nlm.nih.gov/pubmed/24138928 http://dx.doi.org/10.1186/gb-2013-14-10-r115 |
work_keys_str_mv | AT horvathsteve dnamethylationageofhumantissuesandcelltypes |