Cargando…

Responses to Enteric Motor Neurons in the Gastric Fundus of Mice With Reduced Intramuscular Interstitial Cells of Cajal

BACKGROUND/AIMS: Interstitial cells of Cajal (ICC) play important functions in motor activity of the gastrointestinal tract. The role of ICC as pacemakers is well established, however their participation in neurotransmission is controversial. Studies using mutant animals that lack ICC have yielded v...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanders, Kenton M, Salter, Anna K, Hennig, Grant W, Koh, Sang Don, Perrino, Brian A, Ward, Sean M, Baker, Salah A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Neurogastroenterology and Motility 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015192/
https://www.ncbi.nlm.nih.gov/pubmed/24840370
http://dx.doi.org/10.5056/jnm.2014.20.2.171
_version_ 1782315296890028032
author Sanders, Kenton M
Salter, Anna K
Hennig, Grant W
Koh, Sang Don
Perrino, Brian A
Ward, Sean M
Baker, Salah A
author_facet Sanders, Kenton M
Salter, Anna K
Hennig, Grant W
Koh, Sang Don
Perrino, Brian A
Ward, Sean M
Baker, Salah A
author_sort Sanders, Kenton M
collection PubMed
description BACKGROUND/AIMS: Interstitial cells of Cajal (ICC) play important functions in motor activity of the gastrointestinal tract. The role of ICC as pacemakers is well established, however their participation in neurotransmission is controversial. Studies using mutant animals that lack ICC have yielded variable conclusions on their importance in enteric motor responses. The purpose of this study was to: (1) clarify the role of intramuscular ICC (ICC-IM) in gastric motor-neurotransmission and (2) evaluate remodeling of enteric motor responses in W/W(V) mice. METHODS: Kit immunohistochemistry and post-junctional contractile responses were performed on fundus muscles from wild-type and W/W(V) mice and quantitative polymerase chain reaction (qPCR) was used to evaluate differences in muscarinic and neurokinin receptor expression. RESULTS: Although ICC-IM were greatly reduced in comparison with wild-type mice, we found that ICC-IM persisted in the fundus of many W/W(V) animals. ICC-IM were not observed in W/W(V) group 1 (46%) but were observed in W/W(V) group 2 (40%). Evoked neural responses consisted of excitatory and inhibitory components. The inhibitory component (nitrergic) was absent in W/W(V) group 1 and reduced in W/W(V) group 2. Enhanced excitatory responses (cholinergic) were observed in both W/W(V) groups and qPCR revealed that muscarinic-M(3) receptor expression was significantly augmented in the W/W(V) fundus compared to wild-type controls. CONCLUSIONS: This study demonstrates that ICC-IM mediate nitrergic inhibitory neurotransmission in the fundus and provides evidence of plasticity changes in neuronal responses that may explain discrepancies in previous functional studies which utilized mutant animals to examine the role of ICC-IM in gastric enteric motor responses.
format Online
Article
Text
id pubmed-4015192
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Korean Society of Neurogastroenterology and Motility
record_format MEDLINE/PubMed
spelling pubmed-40151922014-05-12 Responses to Enteric Motor Neurons in the Gastric Fundus of Mice With Reduced Intramuscular Interstitial Cells of Cajal Sanders, Kenton M Salter, Anna K Hennig, Grant W Koh, Sang Don Perrino, Brian A Ward, Sean M Baker, Salah A J Neurogastroenterol Motil Original Article BACKGROUND/AIMS: Interstitial cells of Cajal (ICC) play important functions in motor activity of the gastrointestinal tract. The role of ICC as pacemakers is well established, however their participation in neurotransmission is controversial. Studies using mutant animals that lack ICC have yielded variable conclusions on their importance in enteric motor responses. The purpose of this study was to: (1) clarify the role of intramuscular ICC (ICC-IM) in gastric motor-neurotransmission and (2) evaluate remodeling of enteric motor responses in W/W(V) mice. METHODS: Kit immunohistochemistry and post-junctional contractile responses were performed on fundus muscles from wild-type and W/W(V) mice and quantitative polymerase chain reaction (qPCR) was used to evaluate differences in muscarinic and neurokinin receptor expression. RESULTS: Although ICC-IM were greatly reduced in comparison with wild-type mice, we found that ICC-IM persisted in the fundus of many W/W(V) animals. ICC-IM were not observed in W/W(V) group 1 (46%) but were observed in W/W(V) group 2 (40%). Evoked neural responses consisted of excitatory and inhibitory components. The inhibitory component (nitrergic) was absent in W/W(V) group 1 and reduced in W/W(V) group 2. Enhanced excitatory responses (cholinergic) were observed in both W/W(V) groups and qPCR revealed that muscarinic-M(3) receptor expression was significantly augmented in the W/W(V) fundus compared to wild-type controls. CONCLUSIONS: This study demonstrates that ICC-IM mediate nitrergic inhibitory neurotransmission in the fundus and provides evidence of plasticity changes in neuronal responses that may explain discrepancies in previous functional studies which utilized mutant animals to examine the role of ICC-IM in gastric enteric motor responses. Korean Society of Neurogastroenterology and Motility 2014-04 /pmc/articles/PMC4015192/ /pubmed/24840370 http://dx.doi.org/10.5056/jnm.2014.20.2.171 Text en © 2014 The Korean Society of Neurogastroenterology and Motility This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Sanders, Kenton M
Salter, Anna K
Hennig, Grant W
Koh, Sang Don
Perrino, Brian A
Ward, Sean M
Baker, Salah A
Responses to Enteric Motor Neurons in the Gastric Fundus of Mice With Reduced Intramuscular Interstitial Cells of Cajal
title Responses to Enteric Motor Neurons in the Gastric Fundus of Mice With Reduced Intramuscular Interstitial Cells of Cajal
title_full Responses to Enteric Motor Neurons in the Gastric Fundus of Mice With Reduced Intramuscular Interstitial Cells of Cajal
title_fullStr Responses to Enteric Motor Neurons in the Gastric Fundus of Mice With Reduced Intramuscular Interstitial Cells of Cajal
title_full_unstemmed Responses to Enteric Motor Neurons in the Gastric Fundus of Mice With Reduced Intramuscular Interstitial Cells of Cajal
title_short Responses to Enteric Motor Neurons in the Gastric Fundus of Mice With Reduced Intramuscular Interstitial Cells of Cajal
title_sort responses to enteric motor neurons in the gastric fundus of mice with reduced intramuscular interstitial cells of cajal
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015192/
https://www.ncbi.nlm.nih.gov/pubmed/24840370
http://dx.doi.org/10.5056/jnm.2014.20.2.171
work_keys_str_mv AT sanderskentonm responsestoentericmotorneuronsinthegastricfundusofmicewithreducedintramuscularinterstitialcellsofcajal
AT salterannak responsestoentericmotorneuronsinthegastricfundusofmicewithreducedintramuscularinterstitialcellsofcajal
AT henniggrantw responsestoentericmotorneuronsinthegastricfundusofmicewithreducedintramuscularinterstitialcellsofcajal
AT kohsangdon responsestoentericmotorneuronsinthegastricfundusofmicewithreducedintramuscularinterstitialcellsofcajal
AT perrinobriana responsestoentericmotorneuronsinthegastricfundusofmicewithreducedintramuscularinterstitialcellsofcajal
AT wardseanm responsestoentericmotorneuronsinthegastricfundusofmicewithreducedintramuscularinterstitialcellsofcajal
AT bakersalaha responsestoentericmotorneuronsinthegastricfundusofmicewithreducedintramuscularinterstitialcellsofcajal