Cargando…
Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach
BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs which play a key role in the post-transcriptional regulation of many genes. Elucidating miRNA-regulated gene networks is crucial for the understanding of mechanisms and functions of miRNAs in many biological processes, such as cell proliferati...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015287/ https://www.ncbi.nlm.nih.gov/pubmed/24564296 http://dx.doi.org/10.1186/1471-2105-15-S1-S4 |
_version_ | 1782315311872081920 |
---|---|
author | Pio, Gianvito Malerba, Donato D'Elia, Domenica Ceci, Michelangelo |
author_facet | Pio, Gianvito Malerba, Donato D'Elia, Domenica Ceci, Michelangelo |
author_sort | Pio, Gianvito |
collection | PubMed |
description | BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs which play a key role in the post-transcriptional regulation of many genes. Elucidating miRNA-regulated gene networks is crucial for the understanding of mechanisms and functions of miRNAs in many biological processes, such as cell proliferation, development, differentiation and cell homeostasis, as well as in many types of human tumors. To this aim, we have recently presented the biclustering method HOCCLUS2, for the discovery of miRNA regulatory networks. Experiments on predicted interactions revealed that the statistical and biological consistency of the obtained networks is negatively affected by the poor reliability of the output of miRNA target prediction algorithms. Recently, some learning approaches have been proposed to learn to combine the outputs of distinct prediction algorithms and improve their accuracy. However, the application of classical supervised learning algorithms presents two challenges: i) the presence of only positive examples in datasets of experimentally verified interactions and ii) unbalanced number of labeled and unlabeled examples. RESULTS: We present a learning algorithm that learns to combine the score returned by several prediction algorithms, by exploiting information conveyed by (only positively labeled/) validated and unlabeled examples of interactions. To face the two related challenges, we resort to a semi-supervised ensemble learning setting. Results obtained using miRTarBase as the set of labeled (positive) interactions and mirDIP as the set of unlabeled interactions show a significant improvement, over competitive approaches, in the quality of the predictions. This solution also improves the effectiveness of HOCCLUS2 in discovering biologically realistic miRNA:mRNA regulatory networks from large-scale prediction data. Using the miR-17-92 gene cluster family as a reference system and comparing results with previous experiments, we find a large increase in the number of significantly enriched biclusters in pathways, consistent with miR-17-92 functions. CONCLUSION: The proposed approach proves to be fundamental for the computational discovery of miRNA regulatory networks from large-scale predictions. This paves the way to the systematic application of HOCCLUS2 for a comprehensive reconstruction of all the possible multiple interactions established by miRNAs in regulating the expression of gene networks, which would be otherwise impossible to reconstruct by considering only experimentally validated interactions. |
format | Online Article Text |
id | pubmed-4015287 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40152872014-05-23 Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach Pio, Gianvito Malerba, Donato D'Elia, Domenica Ceci, Michelangelo BMC Bioinformatics Research BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs which play a key role in the post-transcriptional regulation of many genes. Elucidating miRNA-regulated gene networks is crucial for the understanding of mechanisms and functions of miRNAs in many biological processes, such as cell proliferation, development, differentiation and cell homeostasis, as well as in many types of human tumors. To this aim, we have recently presented the biclustering method HOCCLUS2, for the discovery of miRNA regulatory networks. Experiments on predicted interactions revealed that the statistical and biological consistency of the obtained networks is negatively affected by the poor reliability of the output of miRNA target prediction algorithms. Recently, some learning approaches have been proposed to learn to combine the outputs of distinct prediction algorithms and improve their accuracy. However, the application of classical supervised learning algorithms presents two challenges: i) the presence of only positive examples in datasets of experimentally verified interactions and ii) unbalanced number of labeled and unlabeled examples. RESULTS: We present a learning algorithm that learns to combine the score returned by several prediction algorithms, by exploiting information conveyed by (only positively labeled/) validated and unlabeled examples of interactions. To face the two related challenges, we resort to a semi-supervised ensemble learning setting. Results obtained using miRTarBase as the set of labeled (positive) interactions and mirDIP as the set of unlabeled interactions show a significant improvement, over competitive approaches, in the quality of the predictions. This solution also improves the effectiveness of HOCCLUS2 in discovering biologically realistic miRNA:mRNA regulatory networks from large-scale prediction data. Using the miR-17-92 gene cluster family as a reference system and comparing results with previous experiments, we find a large increase in the number of significantly enriched biclusters in pathways, consistent with miR-17-92 functions. CONCLUSION: The proposed approach proves to be fundamental for the computational discovery of miRNA regulatory networks from large-scale predictions. This paves the way to the systematic application of HOCCLUS2 for a comprehensive reconstruction of all the possible multiple interactions established by miRNAs in regulating the expression of gene networks, which would be otherwise impossible to reconstruct by considering only experimentally validated interactions. BioMed Central 2014-01-10 /pmc/articles/PMC4015287/ /pubmed/24564296 http://dx.doi.org/10.1186/1471-2105-15-S1-S4 Text en Copyright © 2014 Pio et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Pio, Gianvito Malerba, Donato D'Elia, Domenica Ceci, Michelangelo Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach |
title | Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach |
title_full | Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach |
title_fullStr | Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach |
title_full_unstemmed | Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach |
title_short | Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach |
title_sort | integrating microrna target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015287/ https://www.ncbi.nlm.nih.gov/pubmed/24564296 http://dx.doi.org/10.1186/1471-2105-15-S1-S4 |
work_keys_str_mv | AT piogianvito integratingmicrornatargetpredictionsforthediscoveryofgeneregulatorynetworksasemisupervisedensemblelearningapproach AT malerbadonato integratingmicrornatargetpredictionsforthediscoveryofgeneregulatorynetworksasemisupervisedensemblelearningapproach AT deliadomenica integratingmicrornatargetpredictionsforthediscoveryofgeneregulatorynetworksasemisupervisedensemblelearningapproach AT cecimichelangelo integratingmicrornatargetpredictionsforthediscoveryofgeneregulatorynetworksasemisupervisedensemblelearningapproach |