Cargando…
Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach
BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs which play a key role in the post-transcriptional regulation of many genes. Elucidating miRNA-regulated gene networks is crucial for the understanding of mechanisms and functions of miRNAs in many biological processes, such as cell proliferati...
Autores principales: | Pio, Gianvito, Malerba, Donato, D'Elia, Domenica, Ceci, Michelangelo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015287/ https://www.ncbi.nlm.nih.gov/pubmed/24564296 http://dx.doi.org/10.1186/1471-2105-15-S1-S4 |
Ejemplares similares
-
A Novel Biclustering Algorithm for the Discovery of Meaningful Biological Correlations between microRNAs and their Target Genes
por: Pio, Gianvito, et al.
Publicado: (2013) -
ComiRNet: a web-based system for the analysis of miRNA-gene regulatory networks
por: Pio, Gianvito, et al.
Publicado: (2015) -
Semi-Supervised Multi-View Learning for Gene Network Reconstruction
por: Ceci, Michelangelo, et al.
Publicado: (2015) -
Prediction of new associations between ncRNAs and diseases exploiting multi-type hierarchical clustering
por: Barracchia, Emanuele Pio, et al.
Publicado: (2020) -
Multi-task learning for the simultaneous reconstruction of the human and mouse gene regulatory networks
por: Mignone, Paolo, et al.
Publicado: (2020)