Cargando…
Large-scale biomedical concept recognition: an evaluation of current automatic annotators and their parameters
BACKGROUND: Ontological concepts are useful for many different biomedical tasks. Concepts are difficult to recognize in text due to a disconnect between what is captured in an ontology and how the concepts are expressed in text. There are many recognizers for specific ontologies, but a general appro...
Autores principales: | Funk, Christopher, Baumgartner, William, Garcia, Benjamin, Roeder, Christophe, Bada, Michael, Cohen, K Bretonnel, Hunter, Lawrence E, Verspoor, Karin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015610/ https://www.ncbi.nlm.nih.gov/pubmed/24571547 http://dx.doi.org/10.1186/1471-2105-15-59 |
Ejemplares similares
-
Gene Ontology synonym generation rules lead to increased performance in biomedical concept recognition
por: Funk, Christopher S., et al.
Publicado: (2016) -
Coreference annotation and resolution in the Colorado Richly Annotated Full Text (CRAFT) corpus of biomedical journal articles
por: Cohen, K. Bretonnel, et al.
Publicado: (2017) -
Concept annotation in the CRAFT corpus
por: Bada, Michael, et al.
Publicado: (2012) -
A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools
por: Verspoor, Karin, et al.
Publicado: (2012) -
A UIMA wrapper for the NCBO annotator
por: Roeder, Christophe, et al.
Publicado: (2010)