Cargando…
ENNET: inferring large gene regulatory networks from expression data using gradient boosting
BACKGROUND: The regulation of gene expression by transcription factors is a key determinant of cellular phenotypes. Deciphering genome-wide networks that capture which transcription factors regulate which genes is one of the major efforts towards understanding and accurate modeling of living systems...
Autores principales: | Sławek, Janusz, Arodź, Tomasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015806/ https://www.ncbi.nlm.nih.gov/pubmed/24148309 http://dx.doi.org/10.1186/1752-0509-7-106 |
Ejemplares similares
-
PFBNet: a priori-fused boosting method for gene regulatory network inference
por: Che, Dandan, et al.
Publicado: (2020) -
E2ENNet: An end-to-end neural network for emotional brain-computer interface
por: Han, Zhichao, et al.
Publicado: (2022) -
Efficient proximal gradient algorithm for inference of differential gene networks
por: Wang, Chen, et al.
Publicado: (2019) -
Boolean networks using the chi-square test for inferring large-scale gene regulatory networks
por: Kim, Haseong, et al.
Publicado: (2007) -
Evaluation and improvement of the regulatory inference for large co-expression networks with limited sample size
por: Guo, Wenbin, et al.
Publicado: (2017)