Cargando…

Increased paired box transcription factor 8 has a survival function in Glioma

BACKGROUND: The molecular basis to overcome therapeutic resistance to treat glioblastoma remains unclear. The anti-apoptotic b cell lymphoma 2 (BCL2) gene is associated with treatment resistance, and is transactivated by the paired box transcription factor 8 (PAX8). In earlier studies, we demonstrat...

Descripción completa

Detalles Bibliográficos
Autores principales: Hung, Noelyn, Chen, Yu-Jen, Taha, Ahmad, Olivecrona, Magnus, Boet, Ronald, Wiles, Anna, Warr, Tracy, Shaw, Alisha, Eiholzer, Ramona, Baguley, Bruce C, Eccles, Michael R, Braithwaite, Antony W, MacFarlane, Martin, Royds, Janice A, Slatter, Tania
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015841/
https://www.ncbi.nlm.nih.gov/pubmed/24602166
http://dx.doi.org/10.1186/1471-2407-14-159
Descripción
Sumario:BACKGROUND: The molecular basis to overcome therapeutic resistance to treat glioblastoma remains unclear. The anti-apoptotic b cell lymphoma 2 (BCL2) gene is associated with treatment resistance, and is transactivated by the paired box transcription factor 8 (PAX8). In earlier studies, we demonstrated that increased PAX8 expression in glioma cell lines was associated with the expression of telomerase. In this current study, we more extensively explored a role for PAX8 in gliomagenesis. METHODS: PAX8 expression was measured in 156 gliomas including telomerase-negative tumours, those with the alternative lengthening of telomeres (ALT) mechanism or with a non-defined telomere maintenance mechanism (NDTMM), using immunohistochemistry and quantitative PCR. We also tested the affect of PAX8 knockdown using siRNA in cell lines on cell survival and BCL2 expression. RESULTS: Seventy-two percent of glioblastomas were PAX8-positive (80% telomerase, 73% NDTMM, and 44% ALT). The majority of the low-grade gliomas and normal brain cells were PAX8-negative. The suppression of PAX8 was associated with a reduction in both cell growth and BCL2, suggesting that a reduction in PAX8 expression would sensitise tumours to cell death. CONCLUSIONS: PAX8 is increased in the majority of glioblastomas and promoted cell survival. Because PAX8 is absent in normal brain tissue, it may be a promising therapeutic target pathway for treating aggressive gliomas.