Cargando…
SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.)
BACKGROUND: Field pea (Pisum sativum L.) is a self-pollinating, diploid, cool-season food legume. Crop production is constrained by multiple biotic and abiotic stress factors, including salinity, that cause reduced growth and yield. Recent advances in genomics have permitted the development of low-c...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015884/ https://www.ncbi.nlm.nih.gov/pubmed/24134188 http://dx.doi.org/10.1186/1471-2229-13-161 |
_version_ | 1782315420028502016 |
---|---|
author | Leonforte, Antonio Sudheesh, Shimna Cogan, Noel OI Salisbury, Philip A Nicolas, Marc E Materne, Michael Forster, John W Kaur, Sukhjiwan |
author_facet | Leonforte, Antonio Sudheesh, Shimna Cogan, Noel OI Salisbury, Philip A Nicolas, Marc E Materne, Michael Forster, John W Kaur, Sukhjiwan |
author_sort | Leonforte, Antonio |
collection | PubMed |
description | BACKGROUND: Field pea (Pisum sativum L.) is a self-pollinating, diploid, cool-season food legume. Crop production is constrained by multiple biotic and abiotic stress factors, including salinity, that cause reduced growth and yield. Recent advances in genomics have permitted the development of low-cost high-throughput genotyping systems, allowing the construction of saturated genetic linkage maps for identification of quantitative trait loci (QTLs) associated with traits of interest. Genetic markers in close linkage with the relevant genomic regions may then be implemented in varietal improvement programs. RESULTS: In this study, single nucleotide polymorphism (SNP) markers associated with expressed sequence tags (ESTs) were developed and used to generate comprehensive linkage maps for field pea. From a set of 36,188 variant nucleotide positions detected through in silico analysis, 768 were selected for genotyping of a recombinant inbred line (RIL) population. A total of 705 SNPs (91.7%) successfully detected segregating polymorphisms. In addition to SNPs, genomic and EST-derived simple sequence repeats (SSRs) were assigned to the genetic map in order to obtain an evenly distributed genome-wide coverage. Sequences associated with the mapped molecular markers were used for comparative genomic analysis with other legume species. Higher levels of conserved synteny were observed with the genomes of Medicago truncatula Gaertn. and chickpea (Cicer arietinum L.) than with soybean (Glycine max [L.] Merr.), Lotus japonicus L. and pigeon pea (Cajanus cajan [L.] Millsp.). Parents and RIL progeny were screened at the seedling growth stage for responses to salinity stress, imposed by addition of NaCl in the watering solution at a concentration of 18 dS m(-1.) Salinity-induced symptoms showed normal distribution, and the severity of the symptoms increased over time. QTLs for salinity tolerance were identified on linkage groups Ps III and VII, with flanking SNP markers suitable for selection of resistant cultivars. Comparison of sequences underpinning these SNP markers to the M. truncatula genome defined genomic regions containing candidate genes associated with saline stress tolerance. CONCLUSION: The SNP assays and associated genetic linkage maps developed in this study permitted identification of salinity tolerance QTLs and candidate genes. This constitutes an important set of tools for marker-assisted selection (MAS) programs aimed at performance enhancement of field pea cultivars. |
format | Online Article Text |
id | pubmed-4015884 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40158842014-05-10 SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.) Leonforte, Antonio Sudheesh, Shimna Cogan, Noel OI Salisbury, Philip A Nicolas, Marc E Materne, Michael Forster, John W Kaur, Sukhjiwan BMC Plant Biol Research Article BACKGROUND: Field pea (Pisum sativum L.) is a self-pollinating, diploid, cool-season food legume. Crop production is constrained by multiple biotic and abiotic stress factors, including salinity, that cause reduced growth and yield. Recent advances in genomics have permitted the development of low-cost high-throughput genotyping systems, allowing the construction of saturated genetic linkage maps for identification of quantitative trait loci (QTLs) associated with traits of interest. Genetic markers in close linkage with the relevant genomic regions may then be implemented in varietal improvement programs. RESULTS: In this study, single nucleotide polymorphism (SNP) markers associated with expressed sequence tags (ESTs) were developed and used to generate comprehensive linkage maps for field pea. From a set of 36,188 variant nucleotide positions detected through in silico analysis, 768 were selected for genotyping of a recombinant inbred line (RIL) population. A total of 705 SNPs (91.7%) successfully detected segregating polymorphisms. In addition to SNPs, genomic and EST-derived simple sequence repeats (SSRs) were assigned to the genetic map in order to obtain an evenly distributed genome-wide coverage. Sequences associated with the mapped molecular markers were used for comparative genomic analysis with other legume species. Higher levels of conserved synteny were observed with the genomes of Medicago truncatula Gaertn. and chickpea (Cicer arietinum L.) than with soybean (Glycine max [L.] Merr.), Lotus japonicus L. and pigeon pea (Cajanus cajan [L.] Millsp.). Parents and RIL progeny were screened at the seedling growth stage for responses to salinity stress, imposed by addition of NaCl in the watering solution at a concentration of 18 dS m(-1.) Salinity-induced symptoms showed normal distribution, and the severity of the symptoms increased over time. QTLs for salinity tolerance were identified on linkage groups Ps III and VII, with flanking SNP markers suitable for selection of resistant cultivars. Comparison of sequences underpinning these SNP markers to the M. truncatula genome defined genomic regions containing candidate genes associated with saline stress tolerance. CONCLUSION: The SNP assays and associated genetic linkage maps developed in this study permitted identification of salinity tolerance QTLs and candidate genes. This constitutes an important set of tools for marker-assisted selection (MAS) programs aimed at performance enhancement of field pea cultivars. BioMed Central 2013-10-17 /pmc/articles/PMC4015884/ /pubmed/24134188 http://dx.doi.org/10.1186/1471-2229-13-161 Text en Copyright © 2013 Leonforte et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Leonforte, Antonio Sudheesh, Shimna Cogan, Noel OI Salisbury, Philip A Nicolas, Marc E Materne, Michael Forster, John W Kaur, Sukhjiwan SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.) |
title | SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.) |
title_full | SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.) |
title_fullStr | SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.) |
title_full_unstemmed | SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.) |
title_short | SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.) |
title_sort | snp marker discovery, linkage map construction and identification of qtls for enhanced salinity tolerance in field pea (pisum sativum l.) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015884/ https://www.ncbi.nlm.nih.gov/pubmed/24134188 http://dx.doi.org/10.1186/1471-2229-13-161 |
work_keys_str_mv | AT leonforteantonio snpmarkerdiscoverylinkagemapconstructionandidentificationofqtlsforenhancedsalinitytoleranceinfieldpeapisumsativuml AT sudheeshshimna snpmarkerdiscoverylinkagemapconstructionandidentificationofqtlsforenhancedsalinitytoleranceinfieldpeapisumsativuml AT cogannoeloi snpmarkerdiscoverylinkagemapconstructionandidentificationofqtlsforenhancedsalinitytoleranceinfieldpeapisumsativuml AT salisburyphilipa snpmarkerdiscoverylinkagemapconstructionandidentificationofqtlsforenhancedsalinitytoleranceinfieldpeapisumsativuml AT nicolasmarce snpmarkerdiscoverylinkagemapconstructionandidentificationofqtlsforenhancedsalinitytoleranceinfieldpeapisumsativuml AT maternemichael snpmarkerdiscoverylinkagemapconstructionandidentificationofqtlsforenhancedsalinitytoleranceinfieldpeapisumsativuml AT forsterjohnw snpmarkerdiscoverylinkagemapconstructionandidentificationofqtlsforenhancedsalinitytoleranceinfieldpeapisumsativuml AT kaursukhjiwan snpmarkerdiscoverylinkagemapconstructionandidentificationofqtlsforenhancedsalinitytoleranceinfieldpeapisumsativuml |