Cargando…
LVQ-SMOTE – Learning Vector Quantization based Synthetic Minority Over–sampling Technique for biomedical data
BACKGROUND: Over-sampling methods based on Synthetic Minority Over-sampling Technique (SMOTE) have been proposed for classification problems of imbalanced biomedical data. However, the existing over-sampling methods achieve slightly better or sometimes worse result than the simplest SMOTE. In order...
Autores principales: | Nakamura, Munehiro, Kajiwara, Yusuke, Otsuka, Atsushi, Kimura, Haruhiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016036/ https://www.ncbi.nlm.nih.gov/pubmed/24088532 http://dx.doi.org/10.1186/1756-0381-6-16 |
Ejemplares similares
-
Using an Optimized Learning Vector Quantization- (LVQ-) Based Neural Network in Accounting Fraud Recognition
por: Zheng, Yuan, et al.
Publicado: (2021) -
Retracted: Using an Optimized Learning Vector Quantization- (LVQ-) Based Neural Network in Accounting Fraud Recognition
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
SMOTE-CD: SMOTE for compositional data
por: Nguyen, Teo, et al.
Publicado: (2023) -
SMOTE for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
New classification method based on modular neural networks with the LVQ algorithm and type-2 fuzzy logic
por: Amezcua, Jonathan, et al.
Publicado: (2018)