Cargando…
Ensemble Positive Unlabeled Learning for Disease Gene Identification
An increasing number of genes have been experimentally confirmed in recent years as causative genes to various human diseases. The newly available knowledge can be exploited by machine learning methods to discover additional unknown genes that are likely to be associated with diseases. In particular...
Autores principales: | Yang, Peng, Li, Xiaoli, Chua, Hon-Nian, Kwoh, Chee-Keong, Ng, See-Kiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016241/ https://www.ncbi.nlm.nih.gov/pubmed/24816822 http://dx.doi.org/10.1371/journal.pone.0097079 |
Ejemplares similares
-
Positive-unlabeled learning for disease gene identification
por: Yang, Peng, et al.
Publicado: (2012) -
Integrating diverse biological and computational sources for reliable protein-protein interactions
por: Wu, Min, et al.
Publicado: (2010) -
Inferring Gene-Phenotype Associations via Global Protein Complex Network Propagation
por: Yang, Peng, et al.
Publicado: (2011) -
A core-attachment based method to detect protein complexes in PPI networks
por: Wu, Min, et al.
Publicado: (2009) -
Computational approaches for detecting protein complexes from protein interaction networks: a survey
por: Li, Xiaoli, et al.
Publicado: (2010)