Cargando…

MicroRNA-21 Regulates hTERT via PTEN in Hypertrophic Scar Fibroblasts

BACKGROUND: As an important oncogenic miRNA, microRNA-21 (miR-21) is associated with various malignant diseases. However, the precise biological function of miR-21 and its molecular mechanism in hypertrophic scar fibroblast cells has not been fully elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Quantit...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Hua-Yu, Li, Chao, Bai, Wen-Dong, Su, Lin-Lin, Liu, Jia-Qi, Li, Yan, Shi, Ji-Hong, Cai, Wei-Xia, Bai, Xiao-Zhi, Jia, Yan-Hui, Zhao, Bin, Wu, Xue, Li, Jun, Hu, Da-Hai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016251/
https://www.ncbi.nlm.nih.gov/pubmed/24817011
http://dx.doi.org/10.1371/journal.pone.0097114
Descripción
Sumario:BACKGROUND: As an important oncogenic miRNA, microRNA-21 (miR-21) is associated with various malignant diseases. However, the precise biological function of miR-21 and its molecular mechanism in hypertrophic scar fibroblast cells has not been fully elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative Real-Time PCR (qRT-PCR) analysis revealed significant upregulation of miR-21 in hypertrophic scar fibroblast cells compared with that in normal skin fibroblast cells. The effects of miR-21 were then assessed in MTT and apoptosis assays through in vitro transfection with a miR-21 mimic or inhibitor. Next, PTEN (phosphatase and tensin homologue deleted on chromosome ten) was identified as a target gene of miR-21 in hypertrophic scar fibroblast cells. Furthermore, Western-blot and qRT-PCR analyses revealed that miR-21 increased the expression of human telomerase reverse transcriptase (hTERT) via the PTEN/PI3K/AKT pathway. Introduction of PTEN cDNA led to a remarkable depletion of hTERT and PI3K/AKT at the protein level as well as inhibition of miR-21-induced proliferation. In addition, Western-blot and qRT-PCR analyses confirmed that hTERT was the downstream target of PTEN. Finally, miR-21 and PTEN RNA expression levels in hypertrophic scar tissue samples were examined. Immunohistochemistry assays revealed an inverse correlation between PTEN and hTERT levels in high miR-21 RNA expressing-hypertrophic scar tissues. CONCLUSIONS/SIGNIFICANCE: These data indicate that miR-21 regulates hTERT expression via the PTEN/PI3K/AKT signaling pathway by directly targeting PTEN, therefore controlling hypertrophic scar fibroblast cell growth. MiR-21 may be a potential novel molecular target for the treatment of hypertrophic scarring.