Cargando…
Variational Bayesian causal connectivity analysis for fMRI
The ability to accurately estimate effective connectivity among brain regions from neuroimaging data could help answering many open questions in neuroscience. We propose a method which uses causality to obtain a measure of effective connectivity from fMRI data. The method uses a vector autoregressiv...
Autores principales: | Luessi, Martin, Babacan, S. Derin, Molina, Rafael, Booth, James R., Katsaggelos, Aggelos K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017144/ https://www.ncbi.nlm.nih.gov/pubmed/24847244 http://dx.doi.org/10.3389/fninf.2014.00045 |
Ejemplares similares
-
Identifying Abnormal Connectivity in Patients Using Dynamic Causal Modeling of fMRI Responses
por: Seghier, Mohamed L., et al.
Publicado: (2010) -
Variational Bayesian Pansharpening with Super-Gaussian Sparse Image Priors
por: Pérez-Bueno, Fernando, et al.
Publicado: (2020) -
Network Connectivity in Epilepsy: Resting State fMRI and EEG–fMRI Contributions
por: Centeno, Maria, et al.
Publicado: (2014) -
Missing data estimation in fMRI dynamic causal modeling
por: Zaghlool, Shaza B., et al.
Publicado: (2014) -
Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data
por: Sharaev, Maksim G., et al.
Publicado: (2016)