Cargando…
Atomic-resolution monitoring of protein maturation in live human cells by NMR
We used NMR directly in live human cells to describe the complete post-translational maturation process of human superoxide dismutase 1 (SOD1). We could follow, at atomic resolution, zinc binding, homodimer formation and copper uptake, and discover that copper chaperone for SOD1 (CCS) oxidation of t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017183/ https://www.ncbi.nlm.nih.gov/pubmed/23455544 http://dx.doi.org/10.1038/nchembio.1202 |
Sumario: | We used NMR directly in live human cells to describe the complete post-translational maturation process of human superoxide dismutase 1 (SOD1). We could follow, at atomic resolution, zinc binding, homodimer formation and copper uptake, and discover that copper chaperone for SOD1 (CCS) oxidation of the SOD1 intrasubunit disulfide bond occurs through both copper-dependent and independent mechanisms. Our approach represents a new strategy for structural investigation of endogeneously expressed proteins within a physiological (cellular) environment. |
---|