Cargando…
Herbal adaptogens combined with protein fractions from bovine colostrum and hen egg yolk reduce liver TNF-α expression and protein carbonylation in Western diet feeding in rats
BACKGROUND: We examined if a purported anti-inflammatory supplement (AF) abrogated Western-diet (WD)-induced liver pathology in rats. AF contained: 1) protein concentrates from bovine colostrum and avian egg yolk; 2) herbal adaptogens and antioxidants; and 3) acetyl-L-carnitine. METHODS: Nine month-...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017828/ https://www.ncbi.nlm.nih.gov/pubmed/24822076 http://dx.doi.org/10.1186/1743-7075-11-19 |
_version_ | 1782480013578207232 |
---|---|
author | Mobley, C Brooks Toedebusch, Ryan G Lockwood, Christopher M Heese, Alexander J Zhu, Conan Krieger, Anna E Cruthirds, Clayton L Hofheins, John C Company, Joseph M Wiedmeyer, Charles E Kim, Dae Y Booth, Frank W Roberts, Michael D |
author_facet | Mobley, C Brooks Toedebusch, Ryan G Lockwood, Christopher M Heese, Alexander J Zhu, Conan Krieger, Anna E Cruthirds, Clayton L Hofheins, John C Company, Joseph M Wiedmeyer, Charles E Kim, Dae Y Booth, Frank W Roberts, Michael D |
author_sort | Mobley, C Brooks |
collection | PubMed |
description | BACKGROUND: We examined if a purported anti-inflammatory supplement (AF) abrogated Western-diet (WD)-induced liver pathology in rats. AF contained: 1) protein concentrates from bovine colostrum and avian egg yolk; 2) herbal adaptogens and antioxidants; and 3) acetyl-L-carnitine. METHODS: Nine month-old male Brown Norway rats were allowed ad libitum access to WD for 41–43 days and randomly assigned to WD + AF feeding twice daily for the last 31–33 days (n = 8), or WD and water-placebo feeding twice daily for the last 31–33 days (n = 8). Rats fed a low-fat/low-sucrose diet (CTL, n = 6) for 41–43 days and administered a water-placebo twice daily for the last 31–33 days were also studied. Twenty-four hours following the last gavage-feed, liver samples were analyzed for: a) select mRNAs (via RT-PCR) as well as genome-wide mRNA expression patterns (via RNA-seq); b) lipid deposition; and, c) protein carbonyl and total antioxidant capacity (TAC). Serum was also examined for TAC, 8-isoprostane and clinical chemistry markers. RESULTS: WD + AF rats experienced a reduction in liver Tnf-α mRNA (-2.8-fold, p < 0.01). Serum and liver TAC was lower in WD + AF versus WD and CTL rats (p < 0.05), likely due to exogenous antioxidant ingredients provided through AF as evidenced by a tendency for mitochondrial SOD2 mRNA to increase in WD + AF versus CTL rats (p = 0.07). Liver fat deposition nor liver protein carbonyl content differed between WD + AF versus WD rats, although liver protein carbonyls tended to be lower in WD + AF versus CTL rats (p = 0.08). RNA-seq revealed that 19 liver mRNAs differed between WD + AF versus WD when both groups were compared with CTL rats (+/- 1.5-fold, p < 0.01). Bioinformatics suggest that AF prevented WD-induced alterations in select genes related to the transport and metabolism of carbohydrates in favor of select genes related to lipid transport and metabolism. Finally, serum clinical safety markers and liver pathology (via lesion counting) suggests that chronic consumption of AF was well tolerated. CONCLUSIONS: AF supplementation elicits select metabolic, anti-inflammatory, and anti-oxidant properties which was in spite of WD feeding and persisted up to 24 hours after receiving a final dose. |
format | Online Article Text |
id | pubmed-4017828 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40178282014-05-13 Herbal adaptogens combined with protein fractions from bovine colostrum and hen egg yolk reduce liver TNF-α expression and protein carbonylation in Western diet feeding in rats Mobley, C Brooks Toedebusch, Ryan G Lockwood, Christopher M Heese, Alexander J Zhu, Conan Krieger, Anna E Cruthirds, Clayton L Hofheins, John C Company, Joseph M Wiedmeyer, Charles E Kim, Dae Y Booth, Frank W Roberts, Michael D Nutr Metab (Lond) Research BACKGROUND: We examined if a purported anti-inflammatory supplement (AF) abrogated Western-diet (WD)-induced liver pathology in rats. AF contained: 1) protein concentrates from bovine colostrum and avian egg yolk; 2) herbal adaptogens and antioxidants; and 3) acetyl-L-carnitine. METHODS: Nine month-old male Brown Norway rats were allowed ad libitum access to WD for 41–43 days and randomly assigned to WD + AF feeding twice daily for the last 31–33 days (n = 8), or WD and water-placebo feeding twice daily for the last 31–33 days (n = 8). Rats fed a low-fat/low-sucrose diet (CTL, n = 6) for 41–43 days and administered a water-placebo twice daily for the last 31–33 days were also studied. Twenty-four hours following the last gavage-feed, liver samples were analyzed for: a) select mRNAs (via RT-PCR) as well as genome-wide mRNA expression patterns (via RNA-seq); b) lipid deposition; and, c) protein carbonyl and total antioxidant capacity (TAC). Serum was also examined for TAC, 8-isoprostane and clinical chemistry markers. RESULTS: WD + AF rats experienced a reduction in liver Tnf-α mRNA (-2.8-fold, p < 0.01). Serum and liver TAC was lower in WD + AF versus WD and CTL rats (p < 0.05), likely due to exogenous antioxidant ingredients provided through AF as evidenced by a tendency for mitochondrial SOD2 mRNA to increase in WD + AF versus CTL rats (p = 0.07). Liver fat deposition nor liver protein carbonyl content differed between WD + AF versus WD rats, although liver protein carbonyls tended to be lower in WD + AF versus CTL rats (p = 0.08). RNA-seq revealed that 19 liver mRNAs differed between WD + AF versus WD when both groups were compared with CTL rats (+/- 1.5-fold, p < 0.01). Bioinformatics suggest that AF prevented WD-induced alterations in select genes related to the transport and metabolism of carbohydrates in favor of select genes related to lipid transport and metabolism. Finally, serum clinical safety markers and liver pathology (via lesion counting) suggests that chronic consumption of AF was well tolerated. CONCLUSIONS: AF supplementation elicits select metabolic, anti-inflammatory, and anti-oxidant properties which was in spite of WD feeding and persisted up to 24 hours after receiving a final dose. BioMed Central 2014-04-23 /pmc/articles/PMC4017828/ /pubmed/24822076 http://dx.doi.org/10.1186/1743-7075-11-19 Text en Copyright © 2014 Mobley et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Mobley, C Brooks Toedebusch, Ryan G Lockwood, Christopher M Heese, Alexander J Zhu, Conan Krieger, Anna E Cruthirds, Clayton L Hofheins, John C Company, Joseph M Wiedmeyer, Charles E Kim, Dae Y Booth, Frank W Roberts, Michael D Herbal adaptogens combined with protein fractions from bovine colostrum and hen egg yolk reduce liver TNF-α expression and protein carbonylation in Western diet feeding in rats |
title | Herbal adaptogens combined with protein fractions from bovine colostrum and hen egg yolk reduce liver TNF-α expression and protein carbonylation in Western diet feeding in rats |
title_full | Herbal adaptogens combined with protein fractions from bovine colostrum and hen egg yolk reduce liver TNF-α expression and protein carbonylation in Western diet feeding in rats |
title_fullStr | Herbal adaptogens combined with protein fractions from bovine colostrum and hen egg yolk reduce liver TNF-α expression and protein carbonylation in Western diet feeding in rats |
title_full_unstemmed | Herbal adaptogens combined with protein fractions from bovine colostrum and hen egg yolk reduce liver TNF-α expression and protein carbonylation in Western diet feeding in rats |
title_short | Herbal adaptogens combined with protein fractions from bovine colostrum and hen egg yolk reduce liver TNF-α expression and protein carbonylation in Western diet feeding in rats |
title_sort | herbal adaptogens combined with protein fractions from bovine colostrum and hen egg yolk reduce liver tnf-α expression and protein carbonylation in western diet feeding in rats |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017828/ https://www.ncbi.nlm.nih.gov/pubmed/24822076 http://dx.doi.org/10.1186/1743-7075-11-19 |
work_keys_str_mv | AT mobleycbrooks herbaladaptogenscombinedwithproteinfractionsfrombovinecolostrumandheneggyolkreducelivertnfaexpressionandproteincarbonylationinwesterndietfeedinginrats AT toedebuschryang herbaladaptogenscombinedwithproteinfractionsfrombovinecolostrumandheneggyolkreducelivertnfaexpressionandproteincarbonylationinwesterndietfeedinginrats AT lockwoodchristopherm herbaladaptogenscombinedwithproteinfractionsfrombovinecolostrumandheneggyolkreducelivertnfaexpressionandproteincarbonylationinwesterndietfeedinginrats AT heesealexanderj herbaladaptogenscombinedwithproteinfractionsfrombovinecolostrumandheneggyolkreducelivertnfaexpressionandproteincarbonylationinwesterndietfeedinginrats AT zhuconan herbaladaptogenscombinedwithproteinfractionsfrombovinecolostrumandheneggyolkreducelivertnfaexpressionandproteincarbonylationinwesterndietfeedinginrats AT kriegerannae herbaladaptogenscombinedwithproteinfractionsfrombovinecolostrumandheneggyolkreducelivertnfaexpressionandproteincarbonylationinwesterndietfeedinginrats AT cruthirdsclaytonl herbaladaptogenscombinedwithproteinfractionsfrombovinecolostrumandheneggyolkreducelivertnfaexpressionandproteincarbonylationinwesterndietfeedinginrats AT hofheinsjohnc herbaladaptogenscombinedwithproteinfractionsfrombovinecolostrumandheneggyolkreducelivertnfaexpressionandproteincarbonylationinwesterndietfeedinginrats AT companyjosephm herbaladaptogenscombinedwithproteinfractionsfrombovinecolostrumandheneggyolkreducelivertnfaexpressionandproteincarbonylationinwesterndietfeedinginrats AT wiedmeyercharlese herbaladaptogenscombinedwithproteinfractionsfrombovinecolostrumandheneggyolkreducelivertnfaexpressionandproteincarbonylationinwesterndietfeedinginrats AT kimdaey herbaladaptogenscombinedwithproteinfractionsfrombovinecolostrumandheneggyolkreducelivertnfaexpressionandproteincarbonylationinwesterndietfeedinginrats AT boothfrankw herbaladaptogenscombinedwithproteinfractionsfrombovinecolostrumandheneggyolkreducelivertnfaexpressionandproteincarbonylationinwesterndietfeedinginrats AT robertsmichaeld herbaladaptogenscombinedwithproteinfractionsfrombovinecolostrumandheneggyolkreducelivertnfaexpressionandproteincarbonylationinwesterndietfeedinginrats |