Cargando…

S100A8 Contributes to Drug Resistance by Promoting Autophagy in Leukemia Cells

Autophagy is a double-edged sword in tumorigenesis and plays an important role in the resistance of cancer cells to chemotherapy. S100A8 is a member of the S100 calcium-binding protein family and plays an important role in the drug resistance of leukemia cells, with the mechanisms largely unknown. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Minghua, Zeng, Pei, Kang, Rui, Yu, Yan, Yang, Liangchun, Tang, Daolin, Cao, Lizhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018274/
https://www.ncbi.nlm.nih.gov/pubmed/24820971
http://dx.doi.org/10.1371/journal.pone.0097242
Descripción
Sumario:Autophagy is a double-edged sword in tumorigenesis and plays an important role in the resistance of cancer cells to chemotherapy. S100A8 is a member of the S100 calcium-binding protein family and plays an important role in the drug resistance of leukemia cells, with the mechanisms largely unknown. Here we report that S100A8 contributes to drug resistance in leukemia by promoting autophagy. S100A8 level was elevated in drug resistance leukemia cell lines relative to the nondrug resistant cell lines. Adriamycin and vincristine increased S100A8 in human leukemia cells, accompanied with upregulation of autophagy. RNA interference-mediated knockdown of S100A8 restored the chemosensitivity of leukemia cells, while overexpression of S100A8 enhanced drug resistance and increased autophagy. S100A8 physically interacted with the autophagy regulator BECN1 and was required for the formation of the BECN1-PI3KC3 complex. In addition, interaction between S100A8 and BECN1 relied upon the autophagic complex ULK1-mAtg13. Furthermore, we discovered that exogenous S100A8 induced autophagy, and RAGE was involved in exogenous S100A8-regulated autophagy. Our data demonstrated that S100A8 is involved in the development of chemoresistance in leukemia cells by regulating autophagy, and suggest that S100A8 may be a novel target for improving leukemia therapy.