Cargando…
Multi-Task Linear Programming Discriminant Analysis for the Identification of Progressive MCI Individuals
Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeox...
Autores principales: | Yu, Guan, Liu, Yufeng, Thung, Kim-Han, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018387/ https://www.ncbi.nlm.nih.gov/pubmed/24820966 http://dx.doi.org/10.1371/journal.pone.0096458 |
Ejemplares similares
-
Resting-State Multi-Spectrum Functional Connectivity Networks for Identification of MCI Patients
por: Wee, Chong-Yaw, et al.
Publicado: (2012) -
Estimating sparse functional brain networks with spatial constraints for MCI identification
por: Xue, Yanfang, et al.
Publicado: (2020) -
Correction: Estimating sparse functional brain networks with spatial constraints for MCI identification
por: Xue, Yanfang, et al.
Publicado: (2021) -
Improving Sparsity and Modularity of High-Order Functional Connectivity Networks for MCI and ASD Identification
por: Zhou, Yueying, et al.
Publicado: (2018) -
Estimating Brain Functional Networks Based on Adaptively-Weighted fMRI Signals for MCI Identification
por: Chen, Huihui, et al.
Publicado: (2021)