Cargando…
De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum
BACKGROUND: Triticum monococcum (2n) is a close ancestor of T. urartu, the A-genome progenitor of cultivated hexaploid wheat, and is therefore a useful model for the study of components regulating photomorphogenesis in diploid wheat. In order to develop genetic and genomic resources for such a study...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018402/ https://www.ncbi.nlm.nih.gov/pubmed/24821410 http://dx.doi.org/10.1371/journal.pone.0096855 |
_version_ | 1782480065666220032 |
---|---|
author | Fox, Samuel E. Geniza, Matthew Hanumappa, Mamatha Naithani, Sushma Sullivan, Chris Preece, Justin Tiwari, Vijay K. Elser, Justin Leonard, Jeffrey M. Sage, Abigail Gresham, Cathy Kerhornou, Arnaud Bolser, Dan McCarthy, Fiona Kersey, Paul Lazo, Gerard R. Jaiswal, Pankaj |
author_facet | Fox, Samuel E. Geniza, Matthew Hanumappa, Mamatha Naithani, Sushma Sullivan, Chris Preece, Justin Tiwari, Vijay K. Elser, Justin Leonard, Jeffrey M. Sage, Abigail Gresham, Cathy Kerhornou, Arnaud Bolser, Dan McCarthy, Fiona Kersey, Paul Lazo, Gerard R. Jaiswal, Pankaj |
author_sort | Fox, Samuel E. |
collection | PubMed |
description | BACKGROUND: Triticum monococcum (2n) is a close ancestor of T. urartu, the A-genome progenitor of cultivated hexaploid wheat, and is therefore a useful model for the study of components regulating photomorphogenesis in diploid wheat. In order to develop genetic and genomic resources for such a study, we constructed genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T. monococcum ssp. aegilopoides (accession G3116) and the domesticated spring wheat T. monococcum ssp. monococcum (accession DV92) by generating de novo assemblies of RNA-Seq data derived from both etiolated and green seedlings. PRINCIPAL FINDINGS: The de novo transcriptome assemblies of DV92 and G3116 represent 120,911 and 117,969 transcripts, respectively. We successfully mapped ∼90% of these transcripts from each accession to barley and ∼95% of the transcripts to T. urartu genomes. However, only ∼77% transcripts mapped to the annotated barley genes and ∼85% transcripts mapped to the annotated T. urartu genes. Differential gene expression analyses revealed 22% more light up-regulated and 35% more light down-regulated transcripts in the G3116 transcriptome compared to DV92. The DV92 and G3116 mRNA sequence reads aligned against the reference barley genome led to the identification of ∼500,000 single nucleotide polymorphism (SNP) and ∼22,000 simple sequence repeat (SSR) sites. CONCLUSIONS: De novo transcriptome assemblies of two accessions of the diploid wheat T. monococcum provide new empirical transcriptome references for improving Triticeae genome annotations, and insights into transcriptional programming during photomorphogenesis. The SNP and SSR sites identified in our analysis provide additional resources for the development of molecular markers. |
format | Online Article Text |
id | pubmed-4018402 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40184022014-05-16 De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum Fox, Samuel E. Geniza, Matthew Hanumappa, Mamatha Naithani, Sushma Sullivan, Chris Preece, Justin Tiwari, Vijay K. Elser, Justin Leonard, Jeffrey M. Sage, Abigail Gresham, Cathy Kerhornou, Arnaud Bolser, Dan McCarthy, Fiona Kersey, Paul Lazo, Gerard R. Jaiswal, Pankaj PLoS One Research Article BACKGROUND: Triticum monococcum (2n) is a close ancestor of T. urartu, the A-genome progenitor of cultivated hexaploid wheat, and is therefore a useful model for the study of components regulating photomorphogenesis in diploid wheat. In order to develop genetic and genomic resources for such a study, we constructed genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T. monococcum ssp. aegilopoides (accession G3116) and the domesticated spring wheat T. monococcum ssp. monococcum (accession DV92) by generating de novo assemblies of RNA-Seq data derived from both etiolated and green seedlings. PRINCIPAL FINDINGS: The de novo transcriptome assemblies of DV92 and G3116 represent 120,911 and 117,969 transcripts, respectively. We successfully mapped ∼90% of these transcripts from each accession to barley and ∼95% of the transcripts to T. urartu genomes. However, only ∼77% transcripts mapped to the annotated barley genes and ∼85% transcripts mapped to the annotated T. urartu genes. Differential gene expression analyses revealed 22% more light up-regulated and 35% more light down-regulated transcripts in the G3116 transcriptome compared to DV92. The DV92 and G3116 mRNA sequence reads aligned against the reference barley genome led to the identification of ∼500,000 single nucleotide polymorphism (SNP) and ∼22,000 simple sequence repeat (SSR) sites. CONCLUSIONS: De novo transcriptome assemblies of two accessions of the diploid wheat T. monococcum provide new empirical transcriptome references for improving Triticeae genome annotations, and insights into transcriptional programming during photomorphogenesis. The SNP and SSR sites identified in our analysis provide additional resources for the development of molecular markers. Public Library of Science 2014-05-12 /pmc/articles/PMC4018402/ /pubmed/24821410 http://dx.doi.org/10.1371/journal.pone.0096855 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Fox, Samuel E. Geniza, Matthew Hanumappa, Mamatha Naithani, Sushma Sullivan, Chris Preece, Justin Tiwari, Vijay K. Elser, Justin Leonard, Jeffrey M. Sage, Abigail Gresham, Cathy Kerhornou, Arnaud Bolser, Dan McCarthy, Fiona Kersey, Paul Lazo, Gerard R. Jaiswal, Pankaj De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum |
title |
De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum
|
title_full |
De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum
|
title_fullStr |
De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum
|
title_full_unstemmed |
De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum
|
title_short |
De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum
|
title_sort | de novo transcriptome assembly and analyses of gene expression during photomorphogenesis in diploid wheat triticum monococcum |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018402/ https://www.ncbi.nlm.nih.gov/pubmed/24821410 http://dx.doi.org/10.1371/journal.pone.0096855 |
work_keys_str_mv | AT foxsamuele denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT genizamatthew denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT hanumappamamatha denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT naithanisushma denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT sullivanchris denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT preecejustin denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT tiwarivijayk denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT elserjustin denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT leonardjeffreym denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT sageabigail denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT greshamcathy denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT kerhornouarnaud denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT bolserdan denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT mccarthyfiona denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT kerseypaul denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT lazogerardr denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum AT jaiswalpankaj denovotranscriptomeassemblyandanalysesofgeneexpressionduringphotomorphogenesisindiploidwheattriticummonococcum |