Cargando…

Adipocytes as a vehicle for ex vivo gene therapy: Novel replacement therapy for diabetes and other metabolic diseases

Because of its availability and recent advances in cell biology, adipose tissue is now considered an ideal target site for the preparation of recipient cells and for the transplantation of gene‐transduced cells for supplementation of therapeutic proteins. Inherited or acquired serum protein deficien...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuroda, Masayuki, Bujo, Hideaki, Aso, Masayuki, Saito, Yasushi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019298/
https://www.ncbi.nlm.nih.gov/pubmed/24843509
http://dx.doi.org/10.1111/j.2040-1124.2011.00133.x
Descripción
Sumario:Because of its availability and recent advances in cell biology, adipose tissue is now considered an ideal target site for the preparation of recipient cells and for the transplantation of gene‐transduced cells for supplementation of therapeutic proteins. Inherited or acquired serum protein deficiencies are the ideal targets for gene therapy. However, to develop an effective ex vivo gene therapy‐based protein replacement treatment, the requirements for the recipient cells are different from those for standard gene therapy that is intended to correct the function of the recipient cells themselves. To meet the requirements for such a therapeutic strategy, recent in vitro and animal model studies have developed new methods for the preparation, culture, expansion and manipulation of adipose cells using advanced gene transduction methods and transplantation scaffolds. In this short review, we introduce the progress made in novel adipose tissue‐based therapeutic strategies for the treatment of protein deficiencies by our group and other investigators, and describe their future applications for diabetes and other metabolic diseases. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2011.00133.x, 2011)