Cargando…
Estimating Neuronal Information: Logarithmic Binning of Neuronal Inter-Spike Intervals
Neurons communicate via the relative timing of all-or-none biophysical signals called spikes. For statistical analysis, the time between spikes can be accumulated into inter-spike interval histograms. Information theoretic measures have been estimated from these histograms to assess how information...
Autor principal: | Dorval, Alan D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020285/ https://www.ncbi.nlm.nih.gov/pubmed/24839390 http://dx.doi.org/10.3390/e13020485 |
Ejemplares similares
-
Random Bin for Analyzing Neuron Spike Trains
por: Tamura, Shinichi, et al.
Publicado: (2012) -
Logarithmic encoding of ensemble time intervals
por: Ren, Yue, et al.
Publicado: (2020) -
Power-Law Inter-Spike Interval Distributions Infer a Conditional Maximization of Entropy in Cortical Neurons
por: Tsubo, Yasuhiro, et al.
Publicado: (2012) -
Bayesian binning for maximising information rate of rapid serial presentation for sensory neurons
por: Endres, Dominik, et al.
Publicado: (2007) -
BIN1 protein isoforms are differentially expressed in astrocytes, neurons, and microglia: neuronal and astrocyte BIN1 are implicated in tau pathology
por: Taga, Mariko, et al.
Publicado: (2020)