Cargando…
Genome alignment with graph data structures: a comparison
BACKGROUND: Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analy...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020321/ https://www.ncbi.nlm.nih.gov/pubmed/24712884 http://dx.doi.org/10.1186/1471-2105-15-99 |
_version_ | 1782316049677418496 |
---|---|
author | Kehr, Birte Trappe, Kathrin Holtgrewe, Manuel Reinert, Knut |
author_facet | Kehr, Birte Trappe, Kathrin Holtgrewe, Manuel Reinert, Knut |
author_sort | Kehr, Birte |
collection | PubMed |
description | BACKGROUND: Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as rearrangement studies and phylogenetic inference. Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a genome alignment through identification and removal of graph substructures that indicate errors in the alignment. RESULTS: We compare the structures of commonly used graphs in terms of their abilities to represent alignment information. We describe how the graphs can be transformed into each other, and identify and classify graph substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that remove these substructures. CONCLUSION: We show that crucial pieces of alignment information, associated with inversions and duplications, are not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a conceptual framework for graph-based genome alignment that can assist in the development of future genome alignment tools. |
format | Online Article Text |
id | pubmed-4020321 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40203212014-05-28 Genome alignment with graph data structures: a comparison Kehr, Birte Trappe, Kathrin Holtgrewe, Manuel Reinert, Knut BMC Bioinformatics Research Article BACKGROUND: Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as rearrangement studies and phylogenetic inference. Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a genome alignment through identification and removal of graph substructures that indicate errors in the alignment. RESULTS: We compare the structures of commonly used graphs in terms of their abilities to represent alignment information. We describe how the graphs can be transformed into each other, and identify and classify graph substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that remove these substructures. CONCLUSION: We show that crucial pieces of alignment information, associated with inversions and duplications, are not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a conceptual framework for graph-based genome alignment that can assist in the development of future genome alignment tools. BioMed Central 2014-04-09 /pmc/articles/PMC4020321/ /pubmed/24712884 http://dx.doi.org/10.1186/1471-2105-15-99 Text en Copyright © 2014 Kehr et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kehr, Birte Trappe, Kathrin Holtgrewe, Manuel Reinert, Knut Genome alignment with graph data structures: a comparison |
title | Genome alignment with graph data structures: a comparison |
title_full | Genome alignment with graph data structures: a comparison |
title_fullStr | Genome alignment with graph data structures: a comparison |
title_full_unstemmed | Genome alignment with graph data structures: a comparison |
title_short | Genome alignment with graph data structures: a comparison |
title_sort | genome alignment with graph data structures: a comparison |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020321/ https://www.ncbi.nlm.nih.gov/pubmed/24712884 http://dx.doi.org/10.1186/1471-2105-15-99 |
work_keys_str_mv | AT kehrbirte genomealignmentwithgraphdatastructuresacomparison AT trappekathrin genomealignmentwithgraphdatastructuresacomparison AT holtgrewemanuel genomealignmentwithgraphdatastructuresacomparison AT reinertknut genomealignmentwithgraphdatastructuresacomparison |