Cargando…
High-Throughput Analysis and Characterization of Astragalus membranaceus Transcriptome Using 454 GS FLX
Astragalus membranaceus (Fisch.) Bge (AR), one of the most important medicinal plants in Asia, was found to exhibit various bioactivities. Due to limited genomic and transcriptomic data, the biosynthetic pathway of the major bioactive compound in AR, is currently unclear. In this study, 454 GS FLX t...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020759/ https://www.ncbi.nlm.nih.gov/pubmed/24828103 http://dx.doi.org/10.1371/journal.pone.0095831 |
Sumario: | Astragalus membranaceus (Fisch.) Bge (AR), one of the most important medicinal plants in Asia, was found to exhibit various bioactivities. Due to limited genomic and transcriptomic data, the biosynthetic pathway of the major bioactive compound in AR, is currently unclear. In this study, 454 GS FLX technology was employed to produce a substantial expressed sequence tag (EST) dataset from the AR. In all, 742721 high-quality reads from the AR were produced using Roche GS FLX Titanium. A total of 9893 unique sequences were obtained and annotated by a similarity search against the public databases, and involved in the secondary metabolic pathway, which would facilitate deciphering the molecular mechanism of secondary metabolism in AR. The assembled sequences were annotated with gene names and Gene Ontology (GO) terms. GO revealed the unique sequences that could be assigned to 34 vocabularies. In the KEGG mapping, unique sequences were established as associated with 46 biochemical pathways. These results provided the largest EST collections in AR and will contribute to biosynthetic and biochemical studies that lead to drug improvement. With respect to the genes related to metabolism and biosynthesis pathway were also found. Our work demonstrated the utility of 454 GS FLX as a method for the rapid and cost-effective identification of AR transcriptome, and this EST dataset will be a powerful resource for further studies such as taxonomy, molecular breeding, and secondary metabolism in AR. |
---|