Cargando…
Supervised Learning Classification Models for Prediction of Plant Virus Encoded RNA Silencing Suppressors
Viral encoded RNA silencing suppressor proteins interfere with the host RNA silencing machinery, facilitating viral infection by evading host immunity. In plant hosts, the viral proteins have several basic science implications and biotechnology applications. However in silico identification of these...
Autores principales: | Jagga, Zeenia, Gupta, Dinesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020838/ https://www.ncbi.nlm.nih.gov/pubmed/24828116 http://dx.doi.org/10.1371/journal.pone.0097446 |
Ejemplares similares
-
Classification models for clear cell renal carcinoma stage progression, based on tumor RNAseq expression trained supervised machine learning algorithms
por: Jagga, Zeenia, et al.
Publicado: (2014) -
Screening and Identification of Virus-Encoded RNA Silencing Suppressors
por: Karjee, Sumona, et al.
Publicado: (2008) -
Probing an optimal class distribution for enhancing prediction and feature characterization of plant virus-encoded RNA-silencing suppressors
por: Nath, Abhigyan, et al.
Publicado: (2016) -
Bacterial pathogens encode suppressors of RNA-mediated silencing
por: Mosher, Rebecca A, et al.
Publicado: (2008) -
Identification of Silencing Suppressor Protein Encoded by Strawberry Mottle Virus
por: Fan, Lingjiao, et al.
Publicado: (2022)