Cargando…
Characterization of Microtubule-Binding and Dimerization Activity of Giardia lamblia End-Binding 1 Protein
End-binding 1 (EB1) proteins are evolutionarily conserved components of microtubule (MT) plus-end tracking protein that regulate MT dynamics. Giardia lamblia, with two nuclei and cytoskeletal structures, requires accurate MT distribution for division. In this study, we show that a single EB1 homolog...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020936/ https://www.ncbi.nlm.nih.gov/pubmed/24828878 http://dx.doi.org/10.1371/journal.pone.0097850 |
_version_ | 1782316153810452480 |
---|---|
author | Kim, Juri Nagami, Sara Lee, Kyu-Ho Park, Soon-Jung |
author_facet | Kim, Juri Nagami, Sara Lee, Kyu-Ho Park, Soon-Jung |
author_sort | Kim, Juri |
collection | PubMed |
description | End-binding 1 (EB1) proteins are evolutionarily conserved components of microtubule (MT) plus-end tracking protein that regulate MT dynamics. Giardia lamblia, with two nuclei and cytoskeletal structures, requires accurate MT distribution for division. In this study, we show that a single EB1 homolog gene of G. lamblia regulates MT dynamics in mitosis. The haemagglutinin-tagged G. lamblia EB1 (GlEB1) localizes to the nuclear envelopes and median bodies, and is transiently present in mitotic spindles of dividing cells. Knockdown of GlEB1 expression using the morpholinos-based anti-EB1 oligonucleotides, resulted in a significant defect in mitosis of Giardia trophozoites. The MT-binding assays using recombinant GlEB1 (rGlEB1) proteins demonstrated that rGlEB1(102–238), but not rGlEB1(1–184), maintains an MT-binding ability comparable with that of the full length protein, rGlEB1(1–238). Size exclusion chromatography showed that rGlEB1 is present as a dimer formed by its C-terminal domain and a disulfide bond. In vitro-mutagenesis of GlEB1 indicated that an intermolecular disulfide bond is made between cysteine #13 of the two monomers. Complementation assay using the BIM1 knockout mutant yeast, the yeast homolog of mammalian EB1, indicated that expression of the C13S mutant GlEB1 protein cannot rescue the mitotic defect of the BIM1 mutant yeast. These results suggest that dimerization of GlEB1 via the 13th cysteine residues plays a role during mitosis in Giardia. |
format | Online Article Text |
id | pubmed-4020936 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40209362014-05-21 Characterization of Microtubule-Binding and Dimerization Activity of Giardia lamblia End-Binding 1 Protein Kim, Juri Nagami, Sara Lee, Kyu-Ho Park, Soon-Jung PLoS One Research Article End-binding 1 (EB1) proteins are evolutionarily conserved components of microtubule (MT) plus-end tracking protein that regulate MT dynamics. Giardia lamblia, with two nuclei and cytoskeletal structures, requires accurate MT distribution for division. In this study, we show that a single EB1 homolog gene of G. lamblia regulates MT dynamics in mitosis. The haemagglutinin-tagged G. lamblia EB1 (GlEB1) localizes to the nuclear envelopes and median bodies, and is transiently present in mitotic spindles of dividing cells. Knockdown of GlEB1 expression using the morpholinos-based anti-EB1 oligonucleotides, resulted in a significant defect in mitosis of Giardia trophozoites. The MT-binding assays using recombinant GlEB1 (rGlEB1) proteins demonstrated that rGlEB1(102–238), but not rGlEB1(1–184), maintains an MT-binding ability comparable with that of the full length protein, rGlEB1(1–238). Size exclusion chromatography showed that rGlEB1 is present as a dimer formed by its C-terminal domain and a disulfide bond. In vitro-mutagenesis of GlEB1 indicated that an intermolecular disulfide bond is made between cysteine #13 of the two monomers. Complementation assay using the BIM1 knockout mutant yeast, the yeast homolog of mammalian EB1, indicated that expression of the C13S mutant GlEB1 protein cannot rescue the mitotic defect of the BIM1 mutant yeast. These results suggest that dimerization of GlEB1 via the 13th cysteine residues plays a role during mitosis in Giardia. Public Library of Science 2014-05-14 /pmc/articles/PMC4020936/ /pubmed/24828878 http://dx.doi.org/10.1371/journal.pone.0097850 Text en © 2014 Kim et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kim, Juri Nagami, Sara Lee, Kyu-Ho Park, Soon-Jung Characterization of Microtubule-Binding and Dimerization Activity of Giardia lamblia End-Binding 1 Protein |
title | Characterization of Microtubule-Binding and Dimerization Activity of Giardia lamblia End-Binding 1 Protein |
title_full | Characterization of Microtubule-Binding and Dimerization Activity of Giardia lamblia End-Binding 1 Protein |
title_fullStr | Characterization of Microtubule-Binding and Dimerization Activity of Giardia lamblia End-Binding 1 Protein |
title_full_unstemmed | Characterization of Microtubule-Binding and Dimerization Activity of Giardia lamblia End-Binding 1 Protein |
title_short | Characterization of Microtubule-Binding and Dimerization Activity of Giardia lamblia End-Binding 1 Protein |
title_sort | characterization of microtubule-binding and dimerization activity of giardia lamblia end-binding 1 protein |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020936/ https://www.ncbi.nlm.nih.gov/pubmed/24828878 http://dx.doi.org/10.1371/journal.pone.0097850 |
work_keys_str_mv | AT kimjuri characterizationofmicrotubulebindinganddimerizationactivityofgiardialambliaendbinding1protein AT nagamisara characterizationofmicrotubulebindinganddimerizationactivityofgiardialambliaendbinding1protein AT leekyuho characterizationofmicrotubulebindinganddimerizationactivityofgiardialambliaendbinding1protein AT parksoonjung characterizationofmicrotubulebindinganddimerizationactivityofgiardialambliaendbinding1protein |