Cargando…
A reduced genome decreases the host carrying capacity for foreign DNA
BACKGROUND: Host-plasmid interactions have been discussed largely in terms of the influences of plasmids, whereas the contributions of variations in host genomes to host interactions with foreign DNA remain unclear. A strain with a so-called “clean genome” (i.e., MDS42) of reduced genome size has re...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021254/ https://www.ncbi.nlm.nih.gov/pubmed/24685185 http://dx.doi.org/10.1186/1475-2859-13-49 |
Sumario: | BACKGROUND: Host-plasmid interactions have been discussed largely in terms of the influences of plasmids, whereas the contributions of variations in host genomes to host interactions with foreign DNA remain unclear. A strain with a so-called “clean genome” (i.e., MDS42) of reduced genome size has recently been generated from the wild-type strain MG1655, a commonly used host strain. A quantitative evaluation of the influence of plasmid burdens in these two Escherichia coli strains can not only provide an understanding of how a reduced genome responds to foreign DNA but also offer insights into the proper application of these strains. RESULTS: The decreases in growth caused by the cost of carrying foreign DNA were similar for the wild-type and clean-genome strains. A negative correlation between the growth rate and the total amount of exogenous DNA was observed in both strains, but a better theoretical fit with a higher statistical significance was found for the strain with the clean genome. Compared to the wild-type strain, the clean-genome strain exhibited a reduced carrying capacity for exogenous DNA, which was largely attributed to its ability to restrict the replication of foreign DNA. A tendency to allocate energy and resources toward gene expression, but not DNA replication, was observed in the strain with the clean genome. CONCLUSIONS: The possession of a clean genome constrained the plasmid copy number to a wild-type-equivalent load. The results indicate that the wild-type strain possesses a greater tolerance for foreign DNA, as in endosymbiosis, and that the use of strains with clean genomes will be favorable in the applications that require precise control and theoretical prediction. |
---|