Cargando…
The Bcl-2/xL inhibitor ABT-263 increases the stability of Mcl-1 mRNA and protein in hepatocellular carcinoma cells
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the major causes of mortality. ABT-263 is a newly synthesized, orally available Bcl-2/xL inhibitor that shows promising efficacy in HCC therapy. ABT-263 inhibits the anti-apoptotic activity of Bcl-2 and Bcl-xL, but not Mcl-1. Previous reports have...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021276/ https://www.ncbi.nlm.nih.gov/pubmed/24779770 http://dx.doi.org/10.1186/1476-4598-13-98 |
Sumario: | BACKGROUND: Hepatocellular carcinoma (HCC) is one of the major causes of mortality. ABT-263 is a newly synthesized, orally available Bcl-2/xL inhibitor that shows promising efficacy in HCC therapy. ABT-263 inhibits the anti-apoptotic activity of Bcl-2 and Bcl-xL, but not Mcl-1. Previous reports have shown that ABT-263 upregulates Mcl-1 in various cancer cells, which contributes to ABT-263 resistance in cancer therapy. However, the associated mechanisms are not well known. METHODS: Western blot, RNAi and CCK-8 assays were used to investigate the relationship between Mcl-1 upregulation and ABT-263 sensitivity in HCC cells. Real-time PCR and Western blot were used to detect Mcl-1 mRNA and protein levels. Luciferase reporter assay and RNA synthesis inhibition assay were adopted to analyze the mechanism of Mcl-1 mRNA upregulation. Western blot and the inhibition assays for protein synthesis and proteasome were used to explore the mechanisms of ABT-263-enhanced Mcl-1 protein stability. Trypan blue exclusion assay and flow cytometry were used to examine cell death and apoptosis. RESULTS: ABT-263 upregulated Mcl-1 mRNA and protein levels in HCC cells, which contributes to ABT-263 resistance. ABT-263 increased the mRNA level of Mcl-1 in HCC cells by enhancing the mRNA stability without influencing its transcription. Furthermore, ABT-263 increased the protein stability of Mcl-1 through promoting ERK- and JNK-induced phosphorylation of Mcl-1(Thr163) and increasing the Akt-mediated inactivation of GSK-3β. Additionally, the inhibitors of ERK, JNK or Akt sensitized ABT-263-induced apoptosis in HCC cells. CONCLUSIONS: ABT-263 increases Mcl-1 stability at both mRNA and protein levels in HCC cells. Inhibition of ERK, JNK or Akt activity sensitizes ABT-263-induced apoptosis. This study may provide novel insights into the Bcl-2-targeted cancer therapeutics. |
---|