Cargando…

The Attenuation of Moutan Cortex on Oxidative Stress for Renal Injury in AGEs-Induced Mesangial Cell Dysfunction and Streptozotocin-Induced Diabetic Nephropathy Rats

Oxidative stress (OS) has been regarded as one of the major pathogeneses of diabetic nephropathy (DN) through damaging kidney which is associated with renal cells dysfunction. The aim of this study was to investigate whether Moutan Cortex (MC) could protect kidney function against oxidative stress i...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Minghua, Feng, Liang, Gu, Junfei, Ma, Liang, Qin, Dong, Wu, Chan, Jia, Xiaobin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021834/
https://www.ncbi.nlm.nih.gov/pubmed/24876912
http://dx.doi.org/10.1155/2014/463815
Descripción
Sumario:Oxidative stress (OS) has been regarded as one of the major pathogeneses of diabetic nephropathy (DN) through damaging kidney which is associated with renal cells dysfunction. The aim of this study was to investigate whether Moutan Cortex (MC) could protect kidney function against oxidative stress in vitro or in vivo. The compounds in MC extract were analyzed by HPLC-ESI-MS. High-glucose-fat diet and STZ (30 mg kg(−1)) were used to induce DN rats model, while 200 μg mL(−1) AGEs were for HBZY-1 mesangial cell damage. The treatment with MC could significantly increase the activity of SOD, glutathione peroxidase (GSH-PX), and catalase (CAT). However, lipid peroxidation malondialdehyde (MDA) was reduced markedly in vitro or in vivo. Furthermore, MC decreased markedly the levels of blood glucose, serum creatinine, and urine protein in DN rats. Immunohistochemical assay showed that MC downregulated significantly transforming growth factor beta 2 (TGF-β2) protein expression in renal tissue. Our data provided evidence to support this fact that MC attenuated OS in AGEs-induced mesangial cell dysfunction and also in high-glucose-fat diet and STZ-induced DN rats.