Cargando…

Electroformation of Giant Vesicles on Indium Tin Oxide (ITO)-Coated Poly(ethylene terephthalate) (PET) Electrodes

Electroformation of cell-sized lipid membrane vesicles (giant vesicles, GVs) from egg yolk phosphatidylcholine was examined using a poly(ethylene terephthalate) sheet coated with indium tin oxide (ITO-PET) as the electrode material. With sinusoidal ac voltage, GV formation occurred in a similar mann...

Descripción completa

Detalles Bibliográficos
Autores principales: Okumura, Yukihisa, Iwata, Yuuichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021930/
https://www.ncbi.nlm.nih.gov/pubmed/24957614
http://dx.doi.org/10.3390/membranes1020109
Descripción
Sumario:Electroformation of cell-sized lipid membrane vesicles (giant vesicles, GVs) from egg yolk phosphatidylcholine was examined using a poly(ethylene terephthalate) sheet coated with indium tin oxide (ITO-PET) as the electrode material. With sinusoidal ac voltage, GV formation occurred in a similar manner to that on an ITO-glass electrode widely used in electroformation. Difference in the specific electrical resistance of ITO-PET did not significantly affect electroformation. The present results indicate that ITO-PET may be used as more flexible and less expensive electrode material in electroformation. In order to obtain insights into electroformation, other electric voltage forms, static dc and dc pulses, were also tested in place of commonly used sinusoidal ac. Under the present conditions, the best GV formation was observed with dc pulses of negative polarity. The result with static dc demonstrated that the mechanical vibration of swelling lipid seen with sinusoidal ac voltage was not essential for GV formation. On the positive electrode, the electroswelling of lipid mainly yielded non-spherical membranous objects. Pre-application of positive dc voltage on lipid hindered GV formation in electroswelling of the lipid with ac.