Cargando…

High viral load of Merkel cell polyomavirus DNA sequences in Langerhans cell sarcoma tissues

BACKGROUND: Langerhans cell (LC) sarcoma (LCS) is a high-grade neoplasm with overtly malignant cytologic features and an LC phenotype. We very recently suggested that LC behaves as a reservoir for common dermotropic Merkel cell polyomavirus (MCPyV) and determined the relationship between LC histiocy...

Descripción completa

Detalles Bibliográficos
Autores principales: Murakami, Ichiro, Matsushita, Michiko, Iwasaki, Takeshi, Kuwamoto, Satoshi, Kato, Masako, Horie, Yasushi, Hayashi, Kazuhiko, Gogusev, Jean, Jaubert, Francis, Nakamoto, Shu, Yamakawa, Mitsunori, Nakamine, Hirokazu, Takata, Katsuyoshi, Oka, Takashi, Yoshino, Tadashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022531/
https://www.ncbi.nlm.nih.gov/pubmed/24834110
http://dx.doi.org/10.1186/1750-9378-9-15
Descripción
Sumario:BACKGROUND: Langerhans cell (LC) sarcoma (LCS) is a high-grade neoplasm with overtly malignant cytologic features and an LC phenotype. We very recently suggested that LC behaves as a reservoir for common dermotropic Merkel cell polyomavirus (MCPyV) and determined the relationship between LC histiocytosis (LCH), which has an underlining oncogenic capacity, and MCPyV as a trigger for a reactive process rather than a neoplastic process. We propose LC to be a reservoir for MCPyV and hypothesize that some LCS subtypes may be related to the MCPyV agent. FINDINGS: We examined seven LCS tissues using multiplex quantitative PCR (Q-PCR) and immunohistochemistry with anti MCPyV large-T (LT) antigen antibody. High viral loads of MCPyV DNA sequences (viral load = relative levels of MCPyV) were detected (0.328–0.772 copies/cell (Merkel cell carcinoma (MCC) = 1.0)) using Q-PCR in 43% (3/7) tissues, but LT antigen expression was not observed (0/7). CONCLUSIONS: Frequent MCPyV-DNA amplification suggests that LCS in some patients may be related to MCPyV infection. Moreover, the higher viral load of LCS (median, 0.453 copies/cell) than low load of LCH (0.003, median of 12 cases) (P < 0.01) may suggest a virally induced tumorigenic process in some LCS. Although the absence of LT antigen expression may indicate a different role for MCPyV in this pathology, some subtypes of LCS may develop in the background of MCPyV-infected LC. To the best of our knowledge, this is the first report on the relationship between MCPyV and LCS. The recent discovery of MCPyV opened new therapeutic avenues for MCC. These data open novel possibilities for therapeutic interventions against LCS.