Cargando…
Determining the Most Important Physiological and Agronomic Traits Contributing to Maize Grain Yield through Machine Learning Algorithms: A New Avenue in Intelligent Agriculture
Prediction is an attempt to accurately forecast the outcome of a specific situation while using input information obtained from a set of variables that potentially describe the situation. They can be used to project physiological and agronomic processes; regarding this fact, agronomic traits such as...
Autores principales: | Shekoofa, Avat, Emam, Yahya, Shekoufa, Navid, Ebrahimi, Mansour, Ebrahimie, Esmaeil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022653/ https://www.ncbi.nlm.nih.gov/pubmed/24830330 http://dx.doi.org/10.1371/journal.pone.0097288 |
Ejemplares similares
-
Abscisic Acid and Sulfate Offer a Possible Explanation for Differences in Physiological Drought Response of Two Maize Near-Isolines
por: Shekoofa, Avat, et al.
Publicado: (2020) -
Genetic Dissection of Grain Yield and Agronomic Traits in Maize under Optimum and Low-Nitrogen Stressed Environments
por: Tadesse Ertiro, Berhanu, et al.
Publicado: (2020) -
Aquaporin Activity to Improve Crop Drought Tolerance
por: Shekoofa, Avat, et al.
Publicado: (2018) -
Maize BIG GRAIN1 homolog overexpression increases maize grain yield
por: Simmons, Carl R., et al.
Publicado: (2020) -
Machine learning models effectively distinguish attention-deficit/hyperactivity disorder using event-related potentials
por: Ghasemi, Elham, et al.
Publicado: (2022)