Cargando…
Chemical composition and thermal behavior of five brands of thermoplasticized gutta-percha
OBJECTIVE: The aim of this study was determine the chemical composition and thermal behavior of Thermafil (TH), Microseal Cone (MC), Microseal Microflow (MF), Obtura (OB) and Obtura Flow (OF). In addition, their thermal behavior in response to temperature variations was studied by differential scann...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023192/ https://www.ncbi.nlm.nih.gov/pubmed/24883027 http://dx.doi.org/10.4103/1305-7456.110173 |
Sumario: | OBJECTIVE: The aim of this study was determine the chemical composition and thermal behavior of Thermafil (TH), Microseal Cone (MC), Microseal Microflow (MF), Obtura (OB) and Obtura Flow (OF). In addition, their thermal behavior in response to temperature variations was studied by differential scanning calorimetry (DSC) to determine the temperature at which gutta-percha switches from the beta to alpha form, and from the alpha to the amorphous phase. MATERIALS AND METHODS: The organic and inorganic fractions were separated by dissolution in chloroform. Gutta-percha (GP) was precipitated with acetone. The inorganic fraction was analyzed via Elemental Microanalysis. Energy Dispersive X-ray Microanalysis and X-ray Diffraction were used to identify the chemical elements and compounds (BaSO(4) and ZnO). Thermal analysis was conducted using DSC. RESULTS: The organic and inorganic fractions ranged from 21.3% and 26.9% of weights, respectively. MC and MF showed the highest percentages of organic compounds (P = 0.0125). All specimens exhibited two crystalline transformations when heated from ambient temperature to 130°C. MC presented the highest percentage of GP. CONCLUSIONS: No correlation was observed between chemical composition and thermal behavior. Each of the products showed thermal behavior that is typical of beta-phase gutta-percha. |
---|