Cargando…
Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets
Motivation: To date, gene set analysis approaches primarily focus on identifying differentially expressed gene sets (pathways). Methods for identifying differentially coexpressed pathways also exist but are mostly based on aggregated pairwise correlations or other pairwise measures of coexpression....
Autores principales: | Rahmatallah, Yasir, Emmert-Streib, Frank, Glazko, Galina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023302/ https://www.ncbi.nlm.nih.gov/pubmed/24292935 http://dx.doi.org/10.1093/bioinformatics/btt687 |
Ejemplares similares
-
Comparative evaluation of gene set analysis approaches for RNA-Seq data
por: Rahmatallah, Yasir, et al.
Publicado: (2014) -
Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline
por: Rahmatallah, Yasir, et al.
Publicado: (2016) -
GSAR: Bioconductor package for Gene Set analysis in R
por: Rahmatallah, Yasir, et al.
Publicado: (2017) -
Proteome-transcriptome alignment of molecular portraits achieved by self-contained gene set analysis: Consensus colon cancer subtypes case study
por: Glazko, Galina, et al.
Publicado: (2019) -
Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential
por: Tripathi, Shailesh, et al.
Publicado: (2013)