Cargando…

RNAi-Mediated Knockdown of Serine Protease Inhibitor Genes Increases the Mortality of Plutella xylostella Challenged by Destruxin A

Destruxin A is a mycotoxin that is secreted by entomopathogenic fungi which has a broad-spectrum insecticidal effect. Previous transcript and protein profiling analysis showed that destruxin A has significant effects on the expression of serine protease inhibitor genes (serpin-2, 4, 5) in the larvae...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Pengfei, Fan, Jiqiao, Liu, Yu, Cuthbertson, Andrew G. S., Yan, Shaoqiao, Qiu, Bao-Li, Ren, Shunxiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023956/
https://www.ncbi.nlm.nih.gov/pubmed/24837592
http://dx.doi.org/10.1371/journal.pone.0097863
Descripción
Sumario:Destruxin A is a mycotoxin that is secreted by entomopathogenic fungi which has a broad-spectrum insecticidal effect. Previous transcript and protein profiling analysis showed that destruxin A has significant effects on the expression of serine protease inhibitor genes (serpin-2, 4, 5) in the larvae of Plutella xylostella. In the current study, we aimed to understand the role of serpins under application of destruxin A. We obtained two full-length cDNA sequences of P. xylostella serpins, named serpin-4 and serpin-5, and cloned the serpin-2 gene whose full-length has already been published. Phylogenetic analysis indicated that these two serpin genes were highly clustered with other serpins associated with the immune response in other insects. The temporal and spatial expression of serpin-2, serpin-4 and serpin-5 were determined to be the highest in the fat body and hemolymph of 4(th) larval stage using qRT-PCR and western blot detection techniques. RNA interference (RNAi) mediated knockdown of P. xylostella serpin genes was carried out by microinjection of double-stranded RNA (dsRNA). The expression levels of serpins decreased significantly after RNAi. Results showed that the depletion of serpins induced cecropins expression, increased phenoloxidase (PO) activity, body melanization and mortality in the larvae of P. xylostella under the same lethal concentration of destruxin A. The superimposed effects of serpins RNAi were similar with the destruxin A treatment upon mortality of P. xylostella larvae. We discovered for the first time that serpins play indispensable role in P. xylostella when challenged by destruxin A and deduced the possible function mechanism of destruxin A. Our findings are conducive to fully understanding the potential insecticidal mechanism of destruxin A and constitute a well-defined potential molecular target for novel insecticides.