Cargando…
C-Abl Inhibitor Imatinib Enhances Insulin Production by β Cells: C-Abl Negatively Regulates Insulin Production via Interfering with the Expression of NKx2.2 and GLUT-2
Chronic myelogenous leukemia patients treated with tyrosine kinase inhibitor, Imatinib, were shown to have increased serum levels of C-peptide. Imatinib specifically inhibits the tyrosine kinase, c-Abl. However, the mechanism of how Imatinib treatment can lead to increased insulin level is unclear....
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023982/ https://www.ncbi.nlm.nih.gov/pubmed/24835010 http://dx.doi.org/10.1371/journal.pone.0097694 |
Sumario: | Chronic myelogenous leukemia patients treated with tyrosine kinase inhibitor, Imatinib, were shown to have increased serum levels of C-peptide. Imatinib specifically inhibits the tyrosine kinase, c-Abl. However, the mechanism of how Imatinib treatment can lead to increased insulin level is unclear. Specifically, there is little investigation into whether Imatinib directly affects β cells to promote insulin production. In this study, we showed that Imatinib significantly induced insulin expression in both glucose-stimulated and resting β cells. In line with this finding, c-Abl knockdown by siRNA and overexpression of c-Abl markedly enhanced and inhibited insulin expression in β cells, respectively. Unexpectedly, high concentrations of glucose significantly induced c-Abl expression, suggesting c-Abl may play a role in balancing insulin production during glucose stimulation. Further studies demonstrated that c-Abl inhibition did not affect the major insulin gene transcription factor, pancreatic and duodenal homeobox-1 (PDX-1) expression. Of interest, inhibition of c-Abl enhanced NKx2.2 and overexpression of c-Abl in β cells markedly down-regulated NKx2.2, which is a positive regulator for insulin gene expression. Additionally, we found that c-Abl inhibition significantly enhanced the expression of glucose transporter GLUT2 on β cells. Our study demonstrates a previously unrecognized mechanism that controls insulin expression through c-Abl-regulated NKx2.2 and GLUT2. Therapeutic targeting β cell c-Abl could be employed in the treatment of diabetes or β cell tumor, insulinoma. |
---|