Cargando…

Respiratory Motion Reduction in PET/CT Using Abdominal Compression for Lung Cancer Patients

PURPOSE: Respiratory motion causes substantial artifacts in reconstructed PET images when using helical CT as the attenuation map in PET/CT imaging. In this study, we aimed to reduce the respiratory artifacts in PET/CT images of patients with lung tumors using an abdominal compression device. METHOD...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Tzung-Chi, Wang, Yao-Ching, Chiou, Yu-Rou, Kao, Chia-Hung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024027/
https://www.ncbi.nlm.nih.gov/pubmed/24837352
http://dx.doi.org/10.1371/journal.pone.0098033
Descripción
Sumario:PURPOSE: Respiratory motion causes substantial artifacts in reconstructed PET images when using helical CT as the attenuation map in PET/CT imaging. In this study, we aimed to reduce the respiratory artifacts in PET/CT images of patients with lung tumors using an abdominal compression device. METHODS: Twelve patients with lung cancer located in the middle or lower lobe of the lung were recruited. The patients were injected with 370 MBq of (18)F-FDG. During PET, the patients assumed two bed positions for 1.5 min/bed. After conducting free-breathing imaging, we obtained images of the patients with abdominal compression by applying the same setup used in the free-breathing scan. The differences in the standardized uptake value (SUV)(max), SUV(mean), tumor volume, and the centroid of the tumors between PET and various CT schemes were measured. RESULTS: The SUV(max) and SUV(mean) derived from PET/CT imaging using an abdominal compression device increased for all the lesions, compared with those obtained using the conventional approach. The percentage increases were 18.1% ±14% and 17% ±16.8% for SUV(max) and SUV(mean), respectively. PET/CT imaging combined with abdominal compression generally reduced the tumor mismatch between CT and the corresponding attenuation corrected PET images, with an average decrease of 1.9±1.7 mm over all the cases. CONCLUSIONS: PET/CT imaging combined with abdominal compression reduces respiratory artifacts and PET/CT misregistration, and enhances quantitative SUV in tumor. Abdominal compression is easy to set up and is an effective method used in PET/CT imaging for clinical oncology, especially in the thoracic region.