Cargando…
Japanese Encephalitis Risk and Contextual Risk Factors in Southwest China: A Bayesian Hierarchical Spatial and Spatiotemporal Analysis
It is valuable to study the spatiotemporal pattern of Japanese encephalitis (JE) and its association with the contextual risk factors in southwest China, which is the most endemic area in China. Using data from 2004 to 2009, we applied GISmapping and spatial autocorrelation analysis to analyze repor...
Autores principales: | Zhao, Xing, Cao, Mingqin, Feng, Hai-Huan, Fan, Heng, Chen, Fei, Feng, Zijian, Li, Xiaosong, Zhou, Xiao-Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024990/ https://www.ncbi.nlm.nih.gov/pubmed/24739769 http://dx.doi.org/10.3390/ijerph110404201 |
Ejemplares similares
-
A Scan Statistic for Binary Outcome Based on Hypergeometric Probability Model, with an Application to Detecting Spatial Clusters of Japanese Encephalitis
por: Zhao, Xing, et al.
Publicado: (2013) -
Spatiotemporal Patterns of Japanese Encephalitis in China, 2002–2010
por: Wang, Li-Ya, et al.
Publicado: (2013) -
Bayesian hierarchical modeling of joint spatiotemporal risk patterns for Human Immunodeficiency Virus (HIV) and Tuberculosis (TB) in Kenya
por: Otiende, Verrah A., et al.
Publicado: (2020) -
A hierarchical Bayesian model for understanding the spatiotemporal dynamics of the intestinal epithelium
por: Maclaren, Oliver J., et al.
Publicado: (2017) -
Projecting malaria elimination in Thailand using Bayesian hierarchical spatiotemporal models
por: Rotejanaprasert, Chawarat, et al.
Publicado: (2023)