Cargando…
Regression Models for Log-Normal Data: Comparing Different Methods for Quantifying the Association between Abdominal Adiposity and Biomarkers of Inflammation and Insulin Resistance
We compared six methods for regression on log-normal heteroscedastic data with respect to the estimated associations with explanatory factors (bias and standard error) and the estimated expected outcome (bias and confidence interval). Method comparisons were based on results from a simulation study,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024993/ https://www.ncbi.nlm.nih.gov/pubmed/24681553 http://dx.doi.org/10.3390/ijerph110403521 |
Sumario: | We compared six methods for regression on log-normal heteroscedastic data with respect to the estimated associations with explanatory factors (bias and standard error) and the estimated expected outcome (bias and confidence interval). Method comparisons were based on results from a simulation study, and also the estimation of the association between abdominal adiposity and two biomarkers; C-Reactive Protein (CRP) (inflammation marker,) and Insulin Resistance (HOMA-IR) (marker of insulin resistance). Five of the methods provide unbiased estimates of the associations and the expected outcome; two of them provide confidence intervals with correct coverage. |
---|